Approximate Flash Storage: A Feasibility Study

Amir Rahmati, Matthew Hicks, Atul Prakash
Introduction

Approximate computing
Introduction

Approximate computing

Approximate memory & storage
Introduction

Approximate computing

Approximate memory & storage

Rapid adoption of flash storage
Introduction

Approximate computing

Approximate memory & storage

Rapid adoption of flash storage

Energy Saving / Performance Gain
Previous Work
Previous Work

• **Approximate Memory**: SRAM, DRAM, PCM

 Decreasing input voltage, refresh rate, number of writes
Previous Work

- **Approximate Memory:** SRAM, DRAM, PCM

 Decreasing input voltage, refresh rate, number of writes

- **Under powering Flash:**

 - Find minimum operable voltage (Tseng’13, Half-Wits’11)

 - 34% - 45% Energy saving

 - Repeat writes to correct error to low cases (Half-Wits’11)
Overview
Overview

• **Hypothesis:** By allowing imprecision, it is possible to achieve additional energy saving.
Overview

• **Hypothesis:** By allowing imprecision, it is possible to achieve additional energy saving.

• **Summary of Findings:**
 - Spatial locality in cell volatility
 - Large effect of temperature
Build an Open Platform

- Power Supply
- Voltage Amplifier
- Dev Board
- Flash Memory

Connections:
- VDD
- VFlash
- Address & control lines
- Data lines
Build an Open Platform

Part #, codes, and blueprints are available at
http://amir.rahmati.com
Memory cells are successfully written at a voltage well below their minimum recommended of 4.5V.
Groups of cells in a sector behave similarly to write iterations.
Minimum write voltage of cells in a sector are closely related.
Temperature increase caused by continuous experiments reduce minimum write voltage variations.
Approximate Flash Storage
Approximate Flash Storage

- Partition memory into sectors with different volatility level.
Approximate Flash Storage

• **Partition memory** into sectors with different volatility level.

• Adjust input voltage based on *partition volatility*, *temperature*, and *precision requirement*.
Approximate Flash Storage

- **Partition memory** into sectors with different volatility level.

- Adjust input voltage based on **partition volatility**, **temperature**, and **precision requirement**.

- Choose write location based on **energy** and **storage availability**.
Conclusion
Conclusion

• Is there potential for more energy saving? - Yes
Conclusion

- Is there potential for more energy saving? - Yes
- Is approximate storage feasible? - Yes
Conclusion

• Is there potential for more energy saving? - Yes
• Is approximate storage feasible? - Yes

• For code and blueprints go to:
 http://amir.rahmati.com