
ATtention Spanned: Comprehensive Vulnerability Analysis of
AT Commands Within the Android Ecosystem

Dave (Jing) Tian∗1, Grant Hernandez1, Joseph Choi1, Vanessa Frost1, Christie Ruales1,
Patrick Traynor1, Hayawardh Vijaykumar2, Lee Harrison2, Amir Rahmati2,3, Michael Grace2, and

Kevin R. B. Butler1

1Florida Institute for Cybersecurity (FICS) Research, University of Florida, Gainesville, FL, USA
{daveti,grant.hernandez,choijoseph007,vfrost,cruales,traynor,butler}@ufl.edu

2Samsung Research America, Mountain View, CA, USA
{h.vijaykuma,lee.harrison,amir.rahmati,m1.grace}@samsung.com

3Department of Computer Science, Stony Brook University, Stony Brook, NY, USA

Abstract
AT commands, originally designed in the early 80s for
controlling modems, are still in use in most modern
smartphones to support telephony functions. The role
of AT commands in these devices has vastly expanded
through vendor-specific customizations, yet the extent of
their functionality is unclear and poorly documented. In
this paper, we systematically retrieve and extract 3,500
AT commands from over 2,000 Android smartphone
firmware images across 11 vendors. We methodically
test our corpus of AT commands against eight Android
devices from four different vendors through their USB
interface and characterize the powerful functionality ex-
posed, including the ability to rewrite device firmware,
bypass Android security mechanisms, exfiltrate sensitive
device information, perform screen unlocks, and inject
touch events solely through the use of AT commands. We
demonstrate that the AT command interface contains an
alarming amount of unconstrained functionality and rep-
resents a broad attack surface on Android devices.

1 Introduction

Since their introduction, smartphones have offered sub-
stantial functionality that goes well beyond the ability
to make phone calls. Smartphones are equipped with a
wide variety of sensors, have access to vast quantities of
user information, and allow for capabilities as diverse as
making payments, tracking fitness, and gauging baromet-
ric pressure. However, the ability to make calls over the
cellular network is a fundamental characteristic of smart-
phones. One way this heritage in telephony manifests it-
self is through the support of AT commands, which are
designed for controlling modem functions and date to the
1980s [24]. While some AT commands have been stan-
dardized by regulatory and industry bodies [35, 42], they

∗Dave began this project during an internship at Samsung Research
America.

have also been used by smartphone manufacturers and
operating system designers to access and control device
functionality in proprietary ways. For example, AT com-
mands on Sony Ericsson smartphones can be used to ac-
cess GPS accessories and the camera flash [18].

While previous research (e.g., [20, 46, 47]) has demon-
strated that these commands can expose actions poten-
tially causing security vulnerabilities, these analyses have
been ad-hoc and narrowly focused on specific smartphone
vendors. To date, there has been no systematic study of the
types of AT commands available on modern smartphone
platforms, nor the functionality they enable. In effect, AT
commands represent a source of largely undocumented
and unconstrained functionality.

In this paper, we comprehensively examine the AT
command ecosystem. We assemble a corpus of 2,018
smartphone firmware images from 11 Android smart-
phone manufacturers. We extract 3,500 unique AT com-
mands from these images and combine them with 222
commands we find through standards to create an anno-
tated, cross-referenced database of 3,722 commands. To
our knowledge, this represents the largest known repos-
itory of AT commands. We characterize the commands
based on the evolution of the Android operating system
and smartphone models and determine where AT com-
mands are delivered and consumed within different smart-
phone environments. To determine their impact, we test
the full corpus of 3,500 AT commands by issuing them
through the USB charging interface common to all smart-
phones. We execute these commands across 8 smart-
phones from 4 different manufacturers. We characterize
the functionality of these commands, confirming the op-
eration of undocumented commands through disassembly
of the firmware images.

Our analysis of discovered AT commands exposes
powerful and broad capabilities, including the ability
to bypass Android security mechanisms such as SEAn-
droid in order to retrieve and modify sensitive informa-
tion. Moreover, we find that firmware images from newer

1

smartphones reinstate AT command functionality previ-
ously removed due to security concerns, causing those
vulnerabilities to re-emerge. In short, we find that AT
commands accessed through the USB interface allow al-
most arbitrarily powerful functionality without any au-
thentication required. As such they present a large attack
surface for modern smartphones.

Our contributions can be summarized as follows:

• Systematic Collection and Characterization of
AT Commands. We develop regular expressions
and heuristics for determining the presence of AT
commands in binary smartphone firmware images,
extracting AT commands into an annotated database
that tracks metadata and provenance for each com-
mand. Our database and code are publicly available
at http://atcommands.org.

• Comprehensive Runtime Vulnerability Analysis.
We systematically test 13 Android smartphones and
1 tablet for exposure to the USB modem interface
and find that 5 devices expose the modem by de-
fault while 3 other devices will do so if rooted.
Using this interface, we comprehensively test all
3,722 AT commands to determine the effect of both
standard and vendor-specific commands on indi-
vidual devices. We characterize notable classes
of commands that can cause vulnerabilities such
as firmware flashing, bypassing Android security
mechanisms, and leaking sensitive device informa-
tion. We find that new smartphone platforms reintro-
duce AT command-based vulnerabilities that were
purportedly previously patched.

• Development of Attack Scenarios and Mitiga-
tions. We demonstrate that previously-disclosed
attacks targeting the lock screen [49], which re-
quired malicious application access, can be per-
formed through a USB cable without requiring any
code on the target phone. We demonstrate that arbi-
trary touchscreen events can be injected over USB.
We discover multiple buffer overflow vulnerabili-
ties and commands to expose the contents of /proc
and /sys filesystems, as well as path traversal vul-
nerabilities. We even discover a method to “brick”
and “unbrick” certain phones. We also discuss how
mechanisms such as “charger” mode and SELinux
policies only partially mitigate the threat that broadly
accessible AT commands can pose to smartphone
platforms.

UDC

UDC Driver

USB Gadget
CDC ACM Driver

Applications (APKs)

/dev/ttyXYZ

Native Daemons

Baseband
Processor

RIL

Modem
Driver

USB Device Controller (UDC)

USB Device Controller Driver

Android Composite Driver

UsbService

USB Gadget Driver

UsbDeviceMgr UsbSettingsMgr

Android Init init.usb.rc

sysfs (/sys/class/android_usb)

Kernel
Space

User
Space

Figure 1: Android USB architecture diagrams. The left
shows an Android device behaving like a USB modem
when connected with a host machine and the right is an
overview of the Android USB stack.

2 Background

2.1 AT Commands

First developed by Dennis Hayes in 1981, the AT (AT-
tention) command set comprises commands that predom-
inantly start with the string “AT” [16]. The AT command
set rapidly became an industry standard for controlling
modems. It allowed for performing actions such as select-
ing the communication protocol, setting the line speed,
and dialing a number [40]. The International Telephone
Union (ITU-T) codified the AT command set over the tele-
phone network in Recommendation V.250 [35]. In the late
90s, ETSI standardized the AT command set for GSM [26]
and SMS/CBS [25], and later for UMTS and LTE [27].
Based on the Hayes and GSM AT command sets, ad-
ditional AT commands were introduced for CDMA and
EVDO [42, 43].

Manufacturers of cellular baseband processors (which
provide modem functionality in cellular devices) have
added proprietary and vendor-specific AT commands to
their chipsets [18, 34, 45]. As a result, smartphones also
support their own AT command sets and expose modem
and/or serial interfaces once connected via USB to receive
these AT commands. In some cases, these vendor-specific
AT commands are designed to be issued by software to
invoke specific functionality, (e.g., backing up contact in-
formation on a PC). These vendor-specific commands of-
ten do not invoke any functionality related to telephony,
but to access other resources on the device. Android
phone makers further extended the AT command set by
adding Android-specific commands (e.g., to enable de-
bugging over USB) to be consumed by the Android OS
running on the application processor [58]. These AT com-
mands are also usually sent over a USB connection.1

1It is also possible to send a subset of AT commands over Bluetooth,
although functionality is limited [21].

2

http://atcommands.org

2.2 USB on Android

As the most important and widely adopted peripheral in-
terface in the Android ecosystem, USB is responsible for
a number of important tasks, including battery charging,
data transmission, and network sharing with other de-
vices. To accomplish these tasks via USB, Android de-
vices support three different USB modes: host, device,
and accessory mode. USB device mode, the most com-
mon mode and our focus because of its widespread use,
is used when the phone connects to a PC and emulates
device functionality such as exposing an MTP (Media
Transfer Protocol) endpoint.

As shown in Figure 1, the Android USB implementa-
tion in device mode relies on both the Linux kernel and
the Android framework. In the kernel space, the Android
composite driver exposes a sysfs entry to user space and
interfaces with the kernel’s USB gadget driver. Different
USB functionalities (such as USB Mass Storage or MTP)
require different gadget drivers to be loaded. The gadget
driver sits above the USB controller driver, which com-
municates with the USB device controller (UDC) hard-
ware. Within the user space, the Android UsbService pro-
vides Java interfaces to applications, instantiating UsbDe-
viceManager and UsbSettingsManager to enable users to
switch between different USB functionalities. The An-
droid init daemon typically takes care of setting user-
requested USB functionality by loading an init.usb.rc
script during startup. This init script contains detailed pro-
cedures for setting functionality on the phone, essentially
writing data to the sysfs.

2.3 Android USB Modem Interface

USB Modem functionality in Android can be accessed if
the smartphone vendor exposes a USB CDC (Communi-
cation Device Class) ACM (Abstract Control Model) in-
terface from within their phones. Once enabled and con-
nected, this creates a tty device such as /dev/ttyACM0,
enabling the phone to receive AT commands over the USB
interface [47]. As shown in Figure 1, thettydevice relays
AT commands to the Android user space. Vendor-specific
native daemons read from the device file, and take further
actions based on the nature of the AT command. These
daemons can handle vendor/carrier-added AT commands,
such as “AT+USBDEBUG” (enabling USB debugging)
locally, without notifying the upper layer. Otherwise,
(pre-installed) applications will be triggered to process
the commands. These AT commands are often designed
to provide shortcuts for managing, testing, and debugging
within Android. For Hayes and GSM AT commands, such
as “ATD” (which enables voice dialing), the RIL (Radio
Interface Layer) will be triggered to deliver the command
to the baseband processor.

Vendor # of Firmware # of AT Commands

ASUS 210 803
Google 447 291
HTC 55 299

Huawei 83 1122
LG 150 450

Lenovo 198 1008
LineageOS 199 535
Motorola 145 779
Samsung 373 1251

Sony 128 416
ZTE 30 696

Total 2018 3500

Table 1: Per vendor counts of firmware images examined
and AT commands extracted from all images.

2.4 Threat Model

Throughout the paper, we assume a malicious USB host,
such as a PC or a USB charging station controlled by an
adversary, tries to attack the connected Android phone via
USB. We assume the attacker is able to access or switch
to the possibly inactive AT interface — if available. With
access to this interface, the attacker will be able to send
arbitrary AT commands supported by the target device to
launch attacks. We assume that all of these attacks can
be fully scripted and only require a physical USB con-
nection. Additionally, we assume that Developer Options
and USB Debugging are disabled by default. During the
extraction of AT commands from firmware images, we as-
sume that the existence of AT commands in binaries and
applications are not purposefully obfuscated, encrypted
or compressed.

3 Design & Implementation

We design and implement methods to extract, filter, and
test AT commands found within the Android ecosystem.
Our procedure for acquiring these commands is shown
in Figure 2. We begin by identifying and retrieving 2,018
Android binary smartphone firmware images, covering 11
major Android cellphone vendors. The details of this cor-
pus are shown in Table 1. Next, for each firmware, we
unpack the image using a variety of tools and extract AT
command strings using a regular expression. After addi-
tional filtering, we recover 3,500 unique AT commands,
many of which have differing parameter strings.2 Finally,
using this database, we evaluate the security impact of
these commands on real Android devices by setting up
an automated testing framework to send the commands to
physical Android devices and monitor any side-effects.

2We extracted a total of 7,281 AT commands when different param-
eter strings are included.

3

build.
prop
build.
prop atcmdsAT

cmds

LG
HTC

init.usbinit.usb

Samsung

Image
1 Image

2

Image
N

Image
unzip
unpack
decrypt

grep
“AT” AT DB

parse
filter
assign

2. Extract 3. Import

Mfg. Sites
Public Mirrors

1. Download/Crawl

Figure 2: A graphical depiction of our paper’s Android firmware image processing pipeline.

3.1 AT Command Extraction

We first gather Android firmware images from manufac-
turer websites and third-party hosts. For more details on
the downloading process, see Section A.3. With a corpus
of firmware images, we begin extraction and filtering for
commands. We traverse each Android firmware image
as deeply as possible, recovering unique AT commands
and parameter combinations. Additionally, we also cap-
ture build information for each image from the standard
Android build properties file, build.prop. This file pro-
vides key metadata about the image itself. We also col-
lect any USB init/pre-configuration files (e.g., init.usb.rc)
found in Android boot images to gain insight into the USB
modes supported by each firmware.

In order to find AT commands present in firmware im-
ages, we look in every file for any string containing the
regular expression AT[+*!@#$%^&]. AT commands with
a symbol immediately following the ATtention string are
known as extended AT commands. Original Equipment
Manufacturers (OEMs) are free to add any amount of ex-
tended commands to their products. We focus on solely
collecting AT extended command references within these
firmware images for later categorization and testing.

Many pieces of firmware were archived using stan-
dard formats. Vendor-specific formats included: HTC’s
.exe format, unpackable using the HTC RUU Decrypt
Tool [12]; Huawei’s update.app format, unpackable using
splitupdate [10]; LG’s .kdz/.dz format, unpackable using
LGE KDZ Utilities [7]; and Sony’s .ftf format, unpack-
able using 7-Zip. Any nested archives directly under the
top-level archive (e.g., Samsung images’ several nested
tars) are similarly unpacked.

Once all files are extracted from the archives, we pro-
cess each file according to its characteristics. For native
binaries, such as ELF, we are limited to using strings

to extract all possible strings, over which we grep for
any of our target AT prefixes. For text-based files, grep
is applied directly to catch potential AT commands. For
ZIP-like files, we unzip and traverse the directory to ex-
amine each extracted file. ZIP-like files include yaffs (un-
packed using unyaffs [13]), Lenovo’s SZB (unpacked us-
ing szbtool [11]) and Lenovo’s QSB (unpacked using a

qsb splitter [6]) formats.
If the file is a VFAT or EXT4 filesystem image (e.g.,

system.img), we mount the filesystem and traverse it
once mounted to check each contained file. Filesystem
images are not always readily mountable. They may be
single or split-apart sparse Android images, which we first
convert into EXT4 using the Android simg2img tool [9].
They may be provided as unsparse chunks, which need
to be reconstituted according to an instruction XML file
indicating start sector and number of partition sectors for
each chunk. They may otherwise be provided as sparse
Android data images (SDATs), which are converted into
EXT4 using sdat2img [8]. Sony filesystem images, in par-
ticular, may be given in SIN format, which are converted
into EXT4 using FlashTool [3].

Android filesystem partitions contain APK files, which
we decompile using dex2jar [2] and jd-cli [5] treating the
output as text files to pull AT commands from. Similarly,
we also decompile JAR files using jd-cli before extracting
AT commands from them. Any discovered ODEX files
are first disassembled using baksmali [1], after which we
look for AT commands in the assembly output. We then
reconstruct the DEX file using the assembly output with
smali and decompile it using jadx [4] before looking for
AT commands in the resulting output.

3.2 Building an AT Command Database

After AT commands are extracted from each image, we
develop a script to parse the “AT” matches. This script ap-
plies additional filtering with a more strict regular expres-
sion and uses a scoring heuristic to eliminate commands
that appear to be invalid.

For every command found, we record metadata such as
the vendor, image, and filename where it was discovered.
Additionally we find any parameters to the AT command
and store the unique combinations with the command. To
organize the data, we use MongoDB with a single top-
level document for each vendor. Each vendor has an array
of images, which in turn have Android metadata, includ-
ing, but not limited to, Android version, phone model, and
build ID. Finally, each image has a list of AT commands.

4

A T + E X E C
A T + R E A D ?
A T + T E S T = ?
A T + C S E T = 0 , 1 , “ p a r a m ”

Modem
Attention

Extended Command
Namespace (+, %, …)

Command
Name Optional Parameters

Figure 3: A colorized representation of AT command syn-
tax.

1 (?:[^a-zA -Z0 -9]|^) # Left of the AT must NOT
2 # be a letter or number
3
4 (?P<cmd > # Capture the match
5 AT[!@#$%^&*+] # Match AT[symbol]
6 [_A -Za-z0 -9]{3 ,} # Match the name and
7)
8
9 (?P<arg > # Capture the match

10 \? | # Match AT+READ?
11 # Match AT+CSET =0,1," param"
12 =[" ’+=;%,?A-Za-z0 -9]+ |
13 =\? | # Match AT+TEST=?
14 = # Match a blank parameter
15)? # Match AT+EXEC

Figure 4: The regular expression developed to match ex-
tended AT commands. The regular expression syntax is
from Python. All white space is ignored. Note that the
regex is matching both text files and binary data.

Filtering Lines containing AT commands as discovered
using strings and grep are what we call coarse-grained
matches. This means any matching lines may be invalid
or spurious. We define an invalid match to mean not con-
forming to the expected patterns of an AT command. Fig-
ure 3 shows the syntax of an AT command, with different
colors describing the modem attention string, command
delimiter, command name, and parameter string. It also
shows the four primary uses of AT commands: executing
an action, reading from a parameter, testing for allowed
parameters, and setting a parameter. In practice, what
these types actually do is left up to the implementation.
Regardless, these four types are the standard syntax pat-
terns we aim to match.

To capture these four types, we develop a regular ex-
pression as shown in Figure 4 to match their syntax. Line
1 of the RE will ignore any matches that are not at the
beginning of the matched line and have a letter or num-
ber immediately to the left of the “AT” directive. Line
4-7 will capture and match the AT directive, the extended
command namespace symbol, and the command name,
which must be greater than or equal to three characters
and only contain letters, numbers and underscores. Lines
9-15 will capture any optional argument to the command.

Specification Usage # of AT Commands

Hayes [16, 17] Basic 46
ITU-T V.250 [35] Application 61

ETSI GSM 07.05 [25] SMS 20
ETSI TS 100 916 [26] GSM 95

Total (unique) 222

Table 2: Additional AT commands were manually col-
lected from several specification documents, for a total of
222 unique AT commands.

Line 10 will match a read variant, line 12 a set variant with
a non-zero amount of numeric parameters, string param-
eters, and nested AT commands separated by semicolons
(e.g., AT+CMD=1,10,"var";+OTHER=1,2). Line 13 will
match the test variant and finally line 14 will match an
empty parameter.

Despite this more restrictive regular expression, certain
commands such as AT$L2f, AT+ baT, and AT^tAT com-
monly end up in the AT command database. Upon testing
and visual inspection, we define commands of this appear-
ance to be spurious matches. These false positive matches
polluted our analytics and cause a large increase in unique
commands, which in turn slows down our testing. By
observing the make-up of these invalid commands, we
developed a simple heuristic to score commands based
off of three features: the command length, the character
classes present, and the valid to invalid command ratio of
the file in which it was discovered. For more details on
this heuristic visit Section A.2.

In summary, the regular expression helped us discard
33.2% of all 1,392,871 processed lines across all images.
The heuristic eliminated an additional 2.4% of all pro-
cessed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, the signal to noise ratio
of database increased and our AT command testing was
faster.

Generating a DB Once we have filtered and stored
every AT command along with any found parameters,
we generate plain-text DB files for input into our test-
ing framework. We create DB files containing ev-
ery unique command and parameter and vendor-specific
ATDB files. These give us different test profiles for phone
testing. In addition, we also manually collect AT com-
mands from multiple specifications, as shown in Table 2.
Many of these commands are not extended AT commands
(AT[symbol]) and would not be matched during our fil-
tering step. Also, these AT commands may not be found
inside the Android firmware, but should be supported by
baseband processors meeting the public specifications.
Thus, we include these in our database.

5

3.3 AT Command Testing Framework

After all command databases have been built, we are able
to send AT commands to phones with an exposed AT in-
terface. To achieve this, we developed a Python script run-
ning on Ubuntu 16.04 that uses PySerial to interact with
the phones. When a phone that exposes an AT interface is
plugged in, the Linux kernel will read its USB configura-
tion descriptor and load any necessary drivers. To Linux,
the modem interface appears as a Communication De-
vice Class (CDC) Abstract Control Model (ACM), which
causes the usbserial driver to be loaded. This driver
creates one or more /dev/ttyACM device nodes. PySe-
rial opens and interacts with these device nodes directly
and sets parameters such as the baud rate and bitwidth. In
practice, we were able to communicate with all modems
using a 115200 baud, 8-bit, no parity, 1 stop bit scheme.

For some manufacturers, the USB modem interface is
not included in the default USB configuration. In this
case, there may be a second hidden configuration than can
be dynamically switched to using libusb directly. We
use a public tool called usbswitch [47] to select the alter-
native USB configuration, enabling communication over
the modem interface. Once a modem is exposed, we send
a command, wait for a response or a timeout, and log both
sides of the conversation for future review. This logging
is crucial for understanding what unknown commands are
doing to a phone under test.

During our preliminary testing, we discovered com-
mands that reboot, reset, or cause instabilities in the
phone. We thus blacklist certain commands to allow
our framework to continue without human intervention.
These blacklisted commands are returned to for further
manual inspection. For suspicious commands, we man-
ually rerun them on the target phone couple of times to
narrow down on the exact functionality and behavior.

4 AT Command Analysis

To understand the prevalence and security impact of
AT commands on the Android ecosystem, we perform
firmware analysis and runtime vulnerability analysis, and
we launch attacks. In the firmware analysis, we first ex-
amine the entire corpus of AT commands extracted from
firmware to discover trends in their occurrence across ven-
dors and Android versions. Our goal is to gain insight
into the general usage of AT commands from within the
Android ecosystem. We then take a closer look into the
native binaries and applications that contain the most AT
commands per vendor. This information advises which
binaries to put into IDA for further analysis. We also in-
spect the USB configuration files inside these images and
provide an estimate of how many images may potentially
expose the USB modem interface.

In the runtime vulnerability analysis, we first look at
14 Android devices to confirm their exposure of a USB
modem interface. We launch our AT command testing
framework on 8 different Android devices that do expose
such an interface and collect command information based
on both response and observable effects on the physical
devices during our testing. We categorize these com-
mands and further show their security impact. We lever-
age the knowledge gained of AT commands from runtime
and IDA analysis to create new attacks using AT com-
mands, and we verify these attacks on off-the-shelf An-
droid phones.

4.1 Firmware Analysis
Distribution of AT Commands Across Vendors. We
look at the number of unique AT commands across se-
lect vendors, namely Google, Samsung, and LG. As
the base of all other Android variants, AOSP (Android
Open Source Project) keeps the number of AT commands
contained inside the factory images around 70 on aver-
age. Figure 5a shows the distribution of these commands
across AOSP firmwares. The average amount of AT com-
mands is fewer than 100 across all versions, and is under
75 starting from version 4.3. Version 4.2 has the largest
variance across different images. We correlate this with
the wide product line support of the Nexus series, which
later became the Pixel phone series.

New AT commands are constantly added into stock
ROMs due to vendor-specific customizations. Figure 5b
presents the number of AT commands found in Samsung
Android images. Our results show that the number of AT
commands generally increases across different versions
before Android 5.0. Although the average number stays
fairly stable after version 5.0, it is still above 400. This
means that given an image, Samsung has at least 300 addi-
tional AT commands compared to its AOSP counterpart.
This trend is even more apparent for LG, with the num-
ber of AT commands increasing monotonically as the An-
droid version grows, as shown in Figure 5c. The average
number of AT commands within LG Android version 7.0
images is over 375.
AT Command Top 10. Table 13 in the Appendix shows
the frequency of each of the top 10 most frequent AT com-
mands overall and per different major vendor. All of the
top 10 from the aggregation are standard GSM AT com-
mands, which manage modems and calls. Similarly, all
of the most frequent commands found in AOSP images
are also GSM-related. In contrast, 3 non-standard AT
commands (“AT+DEVCONFINFO”3, “AT+PROF”4, and
“AT+SYNCML”5) are among the most common ones in

3Get the device configuration information.
4Retrieve information, such as “AT+PROF=“Phonebook””.
5Synchronization Markup Language support for device syncing.

6

2.3 4.0 4.1 4.2 4.3 4.4 5.0 5.1 6.0 7.0 7.1
Android Version

50

75

100

125

150

175

200

225
AT

cm
d#

Google

(a) ATcmd Distribution of Google.

2.2 2.3 4.0 4.1 4.2 4.3 4.4 5.0 5.1 6.0 7.0 7.1
Android Version

100

200

300

400

500

600

AT
cm

d#

Samsung

(b) ATcmd Distribution of Samsung.

4.4 5.0 5.1 6.0 7.0
Android Version

200

225

250

275

300

325

350

375

AT
cm

d#

LG

(c) ATcmd Distribution of LG.

Figure 5: AT Command distribution across three major Android smartphone manufacturers.

Google ATcmd#

/vendor/lib/libsec-ril lte.so 183
/lib/libxgold-ril.so 73
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 23
/lib/bluez-plugin/audio.so 19

Samsung
/bin/at distributor 331
/md1rom.img 226
/app/FactoryTest CAM.apk 145
/bin/sec atd 142
/bin/engpc 140

LG
/bin/atd 354
/lib/libreference-ril.so 37
/lib/hw/bluetooth.default.so 27
/app/LGATCMDService/arm/LGATCMDService.odex 19
/app/LGBluetooth4/arm/LGBluetooth4.odex 15

Table 3: Top 5 binaries which contain the most AT com-
mands per Google, Samsung, and LG.

Samsung images besides the 7 GSM-related commands.
Surprisingly, 8 of the top 10 AT commands in LG are
non-standard (prefixed by “AT%”). Further investigation
shows them all to be vendor-specific. We extend our in-
spection to the top 20 AT commands and find the trend to
be the same – the most frequent AT commands are stan-
dard for Google, a combination of standard and home-
made for Samsung, and mainly vendor-specific for LG.

AT Command Usage Per Binary. To see where these AT
commands come from, we summarize the source of these
commands and show the top 5 binaries that contribute the
most commands for Google, Samsung, and LG. As shown
in Table 3, most of the AT commands come from the RIL
in Google. Note that some Bluetooth modules also con-
tain AT commands. For Samsung, besides the modem im-
age (md1rom.img), we could find Samsung-specific na-
tive daemons, such as at distributor. A factory test-
ing app is also listed. For LG, atd seems to be the sole
native daemon, taking care of the most AT commands.

Two LG-specific apps also appear to serve some AT com-
mands.

To gain deeper insight into how AT commands can
affect these systems, we analyzed the flow of AT com-
mands starting from the gadget serial TTY device (usu-
ally /dev/ttyGS0) to any native daemons and finally to
other devices or system applications. We analyzed the LG
G4 and the Samsung S8+ images by reading the relevant
USB init scripts and any native daemons using IDA Pro
7.0. We paired this with manual testing using the AT in-
terface while monitoring the system with logcat.

Samsung S8+. Samsung’s heavy use of AT com-
mands was confirmed through analysis of four key na-
tive daemons: ddexe, at distributor, smdexe, and
port-bridge. The “Data Distributor” ddexe opens the
primary /dev/ttyGS0 device, monitors USB for state
changes, creates a UNIX domain socket server, and routes
TTY data to clients. at distributor connects via
UNIX socket (/data/.socket stream), receives com-
mands, and either handles them itself or dispatches them
to appropriate parts of the system.

As a result of previous work (CVE-2016-4030, CVE-
2016-4031, and CVE-2016-4032), Samsung has locked
down the exposed AT interface with a command whitelist.
This whitelist is active when thero.product ship prop-
erty is set to true and limits the commands to information
gathering only. Any non-whitelisted command responds
with the generic reply of OK, even if it is invalid.

LG G4. LG follows a similar structure to handling AT
commands. Its primary daemon atd reads and writes
to the gadget serial TTY device and handles or bypasses
AT commands. Some commands are handled by a static
dispatch table within atd and may propagate throughout
the system via UNIX domain socket /dev/socket/atd.
LGATCMDService is an Android background service that
listens for and handles any incoming commands before
sending back a response. At least 89 different commands

7

Vendor USB.rc Avg. acm USB.rc Avg. diag
w/ acm Triggers w/ diag Triggers

ASUS 330 2.9 262 2.5
Google 73 5.6 496 29.2
HTC 253 14.3 253 31.3
Huawei 56 5 58 29.1
Lenovo 144 6.7 100 25.7
LG 591 1.1 693 1.0
LineageOS 168 4.4 281 15.1
Motorola 10 16 224 7.0
Samsung 581 5.4 509 19.6
Sony 56 4.7 56 21.2
ZTE 23 6.9 23 36.5

Total 2955 4.1 2285 17.3

Table 4: Per vendor counts of USB.rc files found to con-
tain acm and diag triggers, alongside the average number
of contained triggers. In total, we found 12,018 acm and
39,605 diag triggers across USB.rc files in 1,564 images.

are handled by this application and, given its extensive
system permissions, it is an interesting target. A previous
vulnerability in 2016 [49] (CVE-2016-3117) gave any ap-
plication the ability to communicate through LGATCMD-
Service to atd, allowing the phone to be bricked or sen-
sitive data to be read. Through static analysis of this
service APK, we confirmed that there were now checks
ensuring that only requests from the system user (UID
1000) would be allowed. Despite this patch, unlike Sam-
sung, LG does not whitelist AT commands, so any that are
supported by the Android system or modem are passed
through the USB interface.

USB Pre-Configuration Files. Now that we know the
prevalence of AT commands in the gathered firmware
images, we inspect the susceptibility of the images to
AT commands. We do this by looking at USB init/pre-
configuration files (e.g., init.usb.rc), referred from
here on as USB.rc files, which provide details about the
USB modes supported by the device. We were able to
extract pre-configuration files from 1,564 of the 2,018 to-
tal images, some having multiple such files (for example,
HTC images contain an average of 10).

We look for property:sys.usb.config triggers in
the pre-configuration files and discover that 864 images
(55% of the images from which USB.rc files were suc-
cessfully extracted) contain at least one USB.rc file with
triggers for ACM mode. Since enabling USB modem
functionality causes a CDC-ACM interface to be exposed,
our finding suggests that over half6 of phone firmwares
have the potential to provide modem functionality. We
also look for triggers for diagnostic mode, indicated by

6 We expect a similar prevalence of ACM mode triggers among the
remaining 454 images for which extraction of USB.rc files failed.

Device Android Ver# Modem Exposed

Samsung Galaxy Note 2 4.4.2 Y
Samsung Galaxy S7 Edge 7.0 Y
Samsung Galaxy S8 Plus 7.0 Y

LG G3 6.0 Y
LG G4 6.0 Y

HTC One 4.4.2 Y*
HTC Desire 626 5.1 N
Asus ZenPhone 2 5.0 Y (root)

Asus ZenPad 5.0.2 Y (root)
Google Nexus 5 5.1.1 Y (root)

Google Nexus 5X 6.0 Y (root)
Google Nexus 6P 7.1.1 N*

Google Pixel 7.1.1 N
Motorola Moto X 5.1 N*

Table 5: We examined 14 Android devices to find if they
expose USB modem interfaces. 6 expose the modem by
default; 4 can expose it after being rooted.

diag, which usually activated the ACM interface once en-
abled. We discover that 1,175 images (75% of the images
from which USB.rc files were extracted) contain at least
one USB.rc file with diag triggers. Our finding suggests
that even more phone firmwares (beyond those with ACM
mode triggers) have the potential to provide modem func-
tionality through alternative diag triggers.

Table 4 presents the breakdown of average acm and
diag trigger counts per vendor. Since each image may
have multiple USB.rc files, we average trigger counts over
the total number of these files from each vendor, rather
than the number of images containing USB.rc files.

4.2 Runtime Vulnerability Analysis
We first examine the prevalence of the USB modem in-
terface being exposed by different Android devices. We
look at 13 Android phones and 1 Android tablet from ma-
jor vendors. Table 5 provides an overview of these de-
vices and whether or not they expose a modem interface.
All Samsung and LG phones we tested expose a USB mo-
dem interface by default. HTC One also exposes a mo-
dem interface, but it does not accept any AT commands.
ZenPhone 2, ZenPad, and Nexus 5/5X also expose a mo-
dem interface, but not by default; their USB configuration
must be changed after rooting. Of note, Zenpad, though it
does not support mobile data at all, still exposed a modem
interface. Although neither Nexus 6P nor Moto X reveal
a modem interface during our testing, they have the po-
tential to enable a modem interface by exploiting fastboot
vulnerabilities [31].

We chose 8 devices shown in Table 6 for testing, in-
cluding all devices exposing a USB modem interface by
default, as well as 3 other devices that offer ways to en-
able such an interface. We use our AT command testing
framework to send the 3500 unique AT commands we ex-

8

Device Build Number USB Config

Note2 KOT49H.N7100XXSFQA7 None
S7Edge NRD90M.G935FXXU1DQB7 None
S8+ NRD90M.G955USQU1AQD9 None
G3 MRA58K None
G4 MRA58K None
ZenPhone2* LRX21V.WW-ASUS Z00A-

2.20.40.198 20160930 875 user
system.at-
proxy.mode
[1-4]

ZenPad* LRX22G.WW ZenPad-
12.26.4.69-20170410

sys.usb.config
mtp,acm

Nexus5* LMY48I sys.usb.config
diag,adb

Table 6: We chose 8 devices from Table 5, including 5
phones exposing the modem by default, and 3 rooted de-
vices (as marked by *) with the modem exposed by setting
the USB configuration. We tested all of them using our AT
command testing framework.

Command Action Tested Phones

AT%RESTART Phone reboot G3
AT%PMRST Phone reboot G3
AT%POWEROFF Phone reboot G3/G4
AT%DLOAD Firmware download

mode
G3/G4

AT%FRST Factory reset G3
AT%MODEMRESET Modem reset G3/G4
AT+CRST=FS Factory reset G3/G4
AT+CFUN=0 Phone Reboot G3/G4
AT+CFUN=1,1 Phone reboot S7Edge/S8+
AT+CFUN=1,1 MiniOS and factory

reset status 2
G4

AT+CFUN=6 Phone reboot G3/G4/S8+
AT+CFUN=6,0 Phone reboot S8+
AT+FACTORST=0,0 Factory reset S7Edge/S8+
AT+SUDDLMOD=0,0 Firmware download

mode
Note2/S7Edge/S8+

AT+FUS? Firmware download
mode

Note2/S7Edge/S8+

ATˆRESET Phone power off G3/G4/S8+

Table 7: A selection of commands that can change the
phone’s firmware image through resetting or updating.

tracted, plus 222 standard commands, to each device. We
manually look at the response elicited for each command,
picking up the ones with successful replies or observable
side effects during testing, e.g., causing the device to re-
boot. We are able to group notable behaviors into several
categories that demonstrate the wide security impact of
AT commands using this USB modem interface, which is
either exposed by default or enabled later by other means,
e.g., by rooting the device.

4.2.1 Firmware Flashing

We find AT commands enabling firmware flashing in An-
droid phones, which were reported before [20]. Once the
phone is put into download mode using the AT commands
in Table 7, attackers can attempt to flash rooted or mal-
ware pre-installed images into the phone. On the Sam-

Command Action Tested Phones

ATD Dial a number G3/G4/S8+/Nexus5/
ZenPhone2

ATH Hangup call G3/G4/S8+/Nexus5/
ZenPhone2

ATA Answer incoming call G3/G4/Nexus5
AT%IMEI=[param] Allows the IMEI to be

changed
G3/G4

AT%USB=adb Enables invisible ADB
debugging

G3/G4

AT%KEYLOCK=0 Unlock the screen G3/G4
AT+CKPD Sends keypad keys ([0-9*#]) G3/G4/S8+
AT+CMGS Sends a SMS message ZenPhone2
AT+CGDATA Connect to the Internet

using data
G3/G4/Nexus5/
ZenPhone2

AT+CPIN SIM PIN management G3/G4/S8+/Nexus5/
ZenPhone2

AT$QCMGD Delete messages
(by index, all read/sent)

Nexus5

Table 8: A selection of commands that can be used to gain
further access into the phone.

sung phones we tested, the AT commands put the phone
into Odin [48] mode, although they were not able to by-
pass the device standard firmware authentication mecha-
nism [57, 30]. Odin also sets the KNOX warranty fuse
within a phone if an unsigned firmware image is flashed.
We also found LG has its own firmware flashing AT com-
mand, shown in Table 7, which allows flashing malicious
firmware into the phone using LGUP [39].7 Factory re-
setting AT commands are also found, erasing user data
without permission. Some commands reboot/shutdown
the phone, and we manually inspect security related set-
tings, e.g., USB debugging, after the reboot, but did not
find any particular configuration change.

We observe that some AT commands result in different
behaviors on phones from different vendors. As an exam-
ple, “AT+CFUN=1,1,” although a standard command that
is supposed to “reset the device and provide full function-
alities”8 according to the GSM spec [26], causes Samsung
phones to reboot and causes LG G4 to become bricked
and show “LG G4 factory reset status 2” blue screen error.
Surprisingly, the USB modem interface was still exposed
even in this mode. While we were unable to restore the
phone using any of the normal procedures, we were able
to successfully un-brick the phone using a combination of
“AT%MODEMRESET”, which changes the factory reset
status from 2 into 5, and “AT%RESTART” commands,
which finally reboots the phone into a normal booting en-
vironment following a factory reset.

9

4.2.2 Android Security Bypassing

This section demonstrates AT commands that bypass dif-
ferent Android security mechanisms, such as lock screen,
UI notification, etc., as shown in Table 8. We were able
to make phone calls by sending an “ATD” command to
the phone. Note that this command works even if there
is a screen lock on the phone. Combined with “ATH”
and “ATA,” one can call any number, accept any incom-
ing call, and end a call via a USB connection. Note that
the ATD vulnerability on Samsung phones was reported 2
years ago [47], and it was patched. Neither our Note 2 nor
S7 Edge is able to make a call. Nevertheless, this once-
patched vulnerability reappears on the S8+. Similarly, AT
commands for managing PINs on SIM cards and connect-
ing to the Internet using mobile data were also accessi-
ble on four of the testing phones. These commands are
all standard AT commands delivered to the modem by na-
tive daemons, bypassing the Android framework. We also
find an LG-specific command that allows us to change the
IMEI, again bypassing the Android layer.

One USB debugging enabling command is found in
LG phones, together with an AT command to unlock
the screen. After USB debugging is enabled using this
AT command, there is no indication on the UI showing
USB debugging was enabled, and there is no prompt from
the UI asking for the key to be added. This shows that
the whole Android layer is bypassed without being noti-
fied when we enable USB debugging using this AT com-
mand. Commands for sending touchscreen events and
keystrokes are also discovered for LG phones and the S8+;
we can see the indications on the screen. We suspect these
AT commands were mainly designed for UI automation
testing, since they mimic human interactions. Unfortu-
nately, they also enable more complicated attacks which
only requires a USB connection, as we will show in a later
section.

4.2.3 Sensitive Information Leaking

While Android security has been improving over the
years with respect to protecting privacy information, we
found quite a few AT commands providing different
kinds of information, including IMEI, battery level, phone
model, serial number, manufacturer, filesystem partition
information, software version, Android version, hard-
ware version, SIM card details, etc., as shown in Ta-
ble 9.10 Vendors also introduce their own commands to

7 While Odin wipes everything by default, LGUP leaves the user data
intact in the device if “Upgrade” mode is chosen.

8Level “full functionality” is where the highest level of power is
drawn.

9We discovered a bug leading to arbitrary file reads in the
AT%PROCCAT and AT%SYSCAT commands. See Section 4.3 for
more details.

10For more such commands, please refer to Table 14 in the Appendix.

Command Action Tested Phones

ATI Manufacturer, model,
revision, SVN, IMEI

G4/S8+/Nexus5/
ZenPhone2

AT%SYSCAT Read and return data
from /sys/*9

G3/G4

AT%PROCCAT Read and return data
from /proc/*

G3/G4

AT+DEVCONINFO Phone model, serial
number, IMEI, and etc.

Note2/S7Edge/S8+

AT+GMR Phone model G3/G4/Note2/S8+/
ZenPhone2

AT+IMEINUM IMEI number Note2/S7Edge/S8+
AT+SERIALNO Serial number Note2/S7Edge/S8+
AT+SIZECHECK Filesystem partition

information
Note2/S7Edge/S8+

AT+VERSNAME Android version S7Edge/S8+
AT+CLAC List all supported AT

commands
G3/G4/S7Edge/Nexus5/
ZenPad/ZenPhone2

AT+ICCID Sim card ICCID G3/G4/Nexus5

Table 9: A selection of commands that leak sensitive in-
formation about the device.

[['AT+DEVCONINFO\r+DEVCONINFO:
MN(SM-G955U);BASE(SM-N900);VER(G955USQU1AQD9/
G955UOYN1AQD9/G955USQU1AQD9/G955USQU1AQD9);
HIDVER(G955USQU1AQD9/G955UOYN1AQD9/G955USQU1AQD9/
G955USQU1AQD9);MNC();MCC();PRD(VZW);;OMCCODE();
SN(R38HC09NWMR);IMEI(354003080061555);
UN(9887BC45395656444F);PN();CON(AT,MTP);LOCK(NONE);
LIMIT(FALSE);SDP(RUNTIME);HVID(Data:196609,
Cache:262145,System:327681);USER(OWNER)\r',
'#OK#\r', 'OK\r']]

Figure 6: Output from “AT+DEVCONINFO” on a Sam-
sung S8+. Note information in bold corresponding to
model number, serial number, IMEI, and connection type.

ease querying. These are unauthenticated commands that
can be accessed by anyone. One example command is
“AT+DEVCONINFO” from S8+, providing detailed in-
formation about the phone as shown in Figure 6. Shown
in bold are examples of sensitive device information, in-
cluding device model (MN), serial number (SN), IMEI,
and connection over MTP.

We also find 3 AT commands that report all supported
AT commands on the device. “AT+CLAC” is a stan-
dard command; “AT+LIST” only works on Nexus 5;
and “AT$QCCLAC” appears to be a Qualcomm-specific
command supported by Qualcomm baseband processors.
Note that both “AT+CLAC” and “AT$QCCLAC” could
be supported at the same time within a device, returning
different lists of supported AT commands. We also lever-
aged these commands to limit the scope of AT commands
to try when we attempted to un-brick the LG G4.

4.2.4 Modem AT Proxy

Unlike other Android devices, which rely on
sys.usb.config to manage the USB functionality,
ASUS ZenPhone 2 has a unique setting to enable the

10

Command Action Tested Phones

AT+XDBGCONF Debug configuration ZenPhone2-mode2/
ZenPad

AT+XABBTRACE BB trace configuration ZenPhone-mode2/
ZenPad

AT+XSYSTRACE System trace port
configuration

ZenPhone2-mode2/
ZenPad

AT+XSIMSTATE SIM and phone lock status ZenPhone2-mode2/
ZenPad

AT+XLOG=95,1 Exception log reading ZenPhone2-mode2/
ZenPad

AT+XLEMA Emergency number reset ZenPhone2-mode2/
ZenPad

AT+XNVMPLN PLMN info list for GSM,
UMTS, and LTE tables

ZenPhone2-mode2

Table 10: Commands specific to the AT proxy mode that
allows debugging and tracing inside the modem.

hidden modem interface, called AT proxy mode, as shown
in Table 6. This modem AT proxy does not appear to be
specific to ASUS, but also occurs on Android devices
running Intel Atom processors from other vendors, in-
cluding Intel itself. According to Intel, “this functionality
provides the link to Modem to allow to use AT commands
through a virtual com port” [33]. Many commands found
in ZenPhone 2 also work on ZenPad.

There are 4 modes in ZenPhone 2, numbered from 1
to 4. Based on our testing, mode 1 works like a tradi-
tional modem and responds to most of the AT commands
from the standards, including making a call using “ATD”
and sending a SMS message using “AT+CMGS”. While
most standard commands still work on mode 2, a new
series of command starting with “AT+X” are also sup-
ported. We list some of these in Table 10. We base our
detailed description for each command on online docu-
mentation from Telit [51]. Mode 3 is similar to mode
2, except for truncation of responses to some commands.
Some commands stop working as well in mode 3, e.g.,
“AT+XABBTRACE”. Mode 4 is similar to mode 3, ex-
cept more commands worked without returning errors,
such as “AT+GMI” and “AT+GMM”. In general, once
this AT proxy mode is enabled, attackers can exfiltrate
any information within the modem by setting debug or
trace points.

4.2.5 Others

We present other commands which do not directly fit into
the previous categorizations but have security impacts
as well in Table 11. For example, we found 3 hidden
menus on LG phones during our testing, including Min-
iOS menu, Hidden menu11, and MID result menu. All
of them provide different information, testing, and de-
bugging functionalities. Even though these hidden menus
were exploited before [22], they still exist and can be trig-

11It is called Hidden menu.

Command Action Tested Phones

AT+VZWAPNE Manage APN settings G3/G4
AT$SPDEBUG Engineering debugging

information
Nexus5

AT%MINIOS MiniOS mode G3/G4
AT%VZWHM Hidden menu G3/G4
AT%VZWHM Baseband version Nexus5
AT%VZWIOTHM Baseband version Nexus5
AT%AUTOUITEST MID result menu G3/G4

Table 11: A section of commands that provide APN set-
tings, debugging information, and hidden menus.

gered by a single AT command. Interestingly, the com-
mand used to trigger the hidden menu is also found on
Nexus 5. We suspect that it is partially because Nexus 5
was made by LG. However, the response of the command
is overwritten to return the baseband version. Instead, a
separate AT command was added into Nexus 5 to provide
engineering debugging information.

4.3 Attacks

After analyzing many AT commands across vendors, we
have narrowed down the set to a selection of useful or in-
teresting commands from an attacker’s perspective. To
demonstrate the potential impact of exposed AT interfaces
on phones, we describe actual and theoretical attacks that
may be mounted against them.

Lockscreen Bypassing & Event Injection. With the
discovery of the LG G4’s AT interface and knowledge of
certain AT commands, we developed a proof of concept
attack against the phone in order to enable USB debug-
ging without any user interaction. Access to USB debug-
ging and developer options would allow a local attacker
connected to USB to install new unsigned applications
with high permissions to achieve persistence on a victim’s
phone. Additionally, they may be able to further compro-
mise the system using an Android Kernel exploit through
the Android Debug Bridge (ADB).

To demonstrate this attack, we combine AT commands
to (1) bypass the lock screen (AT%KEYLOCK=0), (2) nav-
igate to the settings menu using touchscreen automation,
and (3) allow USB debugging from our attacking machine
(AT%USB=adb). The KEYLOCK AT command bypasses the
lock screen even if a pattern or passcode is set [23]. From
there, arbitrary touch events can be sent to control the
phone.12 Given that nearly 28% of users do not have a
pin, pattern, or biometric lock [19], this attack would still
be feasible even without the LG-specific KEYLOCK com-
mand.

12Once these commands are patched, visit https://github.com/
FICS/atcmd for an automated script and the required utilities.

11

https://github.com/FICS/atcmd
https://github.com/FICS/atcmd

Confused Deputy Path Traversal. Through manual
auditing of the LG G4’s firmware image in IDA Pro
(specifically in atd), we discovered that the AT%PROCCAT
and AT%SYSCAT commands are intended to open, read,
and send back the contents of a file relative to the /proc
and /sys directories respectively. While this information
alone would be useful for an attacker mounting an attack
against the system, we discovered that these commands
are vulnerable to a path traversal attack. This means
we can send AT%PROCCAT=../arbitrary/file and re-
ceive back the entire file contents over the AT interface.
As a result, we are able to access all data in /sdcard, in-
cluding arbitrary private information. If pictures or appli-
cation data is stored in the /sdcard directory, then they can
be read by this attack. In addition, we attempted to access
Android user data in the /data/data/com.target.app
directories, but were unsuccessful due as no allow rule
was made for atd to access this region. The atd daemon
runs as the Android System user and acts within a rea-
sonably privileged SEAndroid context. It is unclear how
permissive the AT distributors’ policies are, but future au-
diting will focus on this area.

Memory Corruption. During our manual AT com-
mand testing, we discovered multiple buffer overflows
in the LG G3 & G4 atd process and one in the Sam-
sung S8+ connfwexe daemon. Upon inspection of
the tombstones (Android’s crash dump), all appeared to
be crashes via SIGABRT trigged from FORTIFY fail-
ures [36]. Although these out-of-bounds writes were
caught by FORTIFY SOURCE and are not exploitable, it is
possible that further stress testing and auditing of these
native daemons could yield an exploitable vulnerability.
Given that these interfaces are undocumented and propri-
etary, we believe it to be unlikely that they have received
audit from an external source.

If an exploitable memory corruption or Use-After-
Free vulnerability were discovered on LG’s system
daemons, we could dynamically gather Return Ori-
ented Programming (ROP) gadgets by using a call to
AT%PROCCAT=[pid]/exe to leak the entire binary image
and reveal Address Space Layout Randomization (ASLR)
slides using AT%PROCCAT=[pid]/maps to get all of the
memory region address ranges.

5 Discussion

Methodology Limitations. The design of the regular
expression is a tradeoff between discovering as many AT
commands as possible and keeping the false positive rate
low. Nevertheless, we might miss some AT commands
due to regex mismatching. For instance, we assume the
prefix “AT” is in the capital case, and ignore the small

case “at”. Because “at” introduced more false alarms, and
the prefix should be case insensitive according the stan-
dards. However, we did find few commands only working
in the small case on certain device. Due to the limitation
of static analysis, we also could not find AT commands
which are built dynamically during the runtime. While
our testing framework is able to send out AT commands
and record response in the logging automatically, fully au-
tomated testing is still infeasible. A response may be as
simple as “OK” and the side effect of a command (e.g.,
warning of configuration changes) might be transient. To
figure out the exact impact of a command, we need to en-
able logcat from ADB to inspect the propagation path of
the command, and stare at the phone screen during the
command runtime looking for Android UI notifications.
Some commands also reset the USB connection which re-
quires human intervention to resume the testing.

USB Attack Surface. During our static and dynamic
analysis, we realized that there is a lot of extra functional-
ity hidden in phone configurations (e.g., init.usb.rc) such
as DIAG (Diagnostic), DM (Diagnostic Mode), TTY/SE-
RIAL (Terminal), SMD (Shared Memory Device), RM-
NET (Remote Network). This diverse functionality is a
benefit of Android’s mature USB gadget driver, but un-
fortunately compared to MTP, Mass Storage, and ADB,
these USB classes are less understood or even proprietary.

These gadget interfaces all have different security im-
plications for the phones that expose them. Depending
on the protocols, they may be abused to compromise the
integrity of the phone if inadvertently exposed in produc-
tion. Some protocols such as DIAG offer full system con-
trol as a feature. This mode should never be exposed dur-
ing a production build. Our work has shown that even
access to a CDC ACM interface to input AT commands
can lead to unintended information loss or act as a start-
ing point for more sophisticated attacks. We thus strongly
recommend that manufacturers apply appropriate access
controls to all debug interfaces, or disable them outright,
when shipping production devices.

“Charge-Only” Mode Effectiveness. One may expect
Android’s “charge-only” mode to protect against com-
mands sent over USB, but the real-world case is more
complicated. The first issue is that not every Android ver-
sion supports the charge only mode. For instance, Sam-
sung Note 2, running Android 4.4.2, does not have this
option at all. Second, charge only may not be the de-
fault option when the phone connected via USB. All three
Samsung phones we tested start in MTP mode by default
when connected with the host machine. This enables at-
tackers to switch to the modem interface and launch AT
commands as soon as the phone is connected.

12

LG does better since the default option is charge only.
However, once another USB option, e.g., MTP, is cho-
sen, this option becomes the default option across reboots.
With MTP enabled by default, an Android security pop-up
will initially show asking to allow the host machine to ac-
cess the device. But despite no choice having been made,
it is already too late as AT commands may be sent to the
phone immediately before Allow or Deny is chosen, ef-
fectively disabling charge only mode using AT%USB=adb

until the next reboot. Finally, some phones may not dis-
able all USB data even in charging mode. The Samsung
S7 Edge we tested exposes the USB modem interface even
after being put in charge only mode.

SELinux Effectiveness. Given the diverse and power-
ful functionality provided by AT commands, we wonder
if SELinux could help mitigate the impact, such as pre-
venting attackers from flashing malicious firmware into
the device using AT commands. SELinux was introduced
into the Android ecosystem from Android 4.3, and then
became the default configurations in later versions. All
the devices we tested have SELinux enabled in enforcing
mode. We also did not find any AT command, which can
disable or bypass SELinux.

When analyzing the LG G4 phone we discovered that
its primary AT distributor daemon possessed the Linux
Capabilities CAP SYS ADMIN, CAP DAC OVERRIDE, and
CAP CHOWN. Normally a non-root process with these ca-
pabilities would have little trouble escalating root due to
the vast permissions given. With this assumption we at-
tempted to read Android app user data using the distrib-
utor’s permissions (see Section 4.3), but were blocked by
SELinux’s Mandatory Access Control (MAC) policy. In
this case, SELinux prevented sensitive information from
being leaked, but without a full audit of the policy, a by-
pass could still exist.

6 Related Work

The Android community has been aware of the impact
of vendor customization on Android images. Felt et
al. [28, 29] investigated over 900 Android applications
and discovered occurrences of over privilege and permis-
sion re-delegation. Wu et al. [56] showed that 85.78% of
the pre-loaded apps in 10 stock Android images are over
privileged due to vendor customizations. Aafer et al. [14]
analyzed the threat of hanging attribute references within
pre-installed apps by looking into 97 factory images cov-
ering major Android vendors. Previous research mainly
focused on apps inside the Android image, so the number
of images covered was usually limited. Zhou et al. [59]
studied the vulnerabilities of Linux device drivers in An-
droid customizations, and found common issues shared

by 1290 of 2423 factory images. Aafer et al. [15] discov-
ered inconsistent security configurations among 591 cus-
tom images. Unlike previous work oriented around static
analysis, we consider both static and dynamic analysis.

Communicating with the modem within a Samsung
S2 using AT commands was previously detailed on the
XDA forums [58]. Pereira et al. showed how to use two
AT commands to flash a malicious image onto Samsung
phones [46, 20]. Roberto and Aristide found additional
commands working on Samsung Galaxy S4 and S6 with
certain image builds [47]. Bluebug [38] showed how to
exploit a security loophole within Bluetooth to issue AT
commands via a covert channel to vulnerable phones. Hay
discovered around 10 AT commands with security im-
pacts on Nexus 6P due to the exposure of the AT interface
exploited from the Android bootloader (ABOOT) [31].
Mickey et al. also demonstrated how to exploit the modem
in cars using AT commands via USB connections [41].
Unlike previous work which focused on a single brand/-
model, limited the number of AT commands covered,
or rediscovered the traditional AT commands for real
modems, we provide a systematic study of traditional and
Android-specific AT commands in Android ecosystems
across different major vendors and phone models.

While USB security has been evaluated in traditional
computing environments [44, 52, 53, 32], it has received
limited attention on mobile computing platforms. Stavrou
et al. demonstrated how a malicious host machine can un-
lock the bootloader and flash a compromised system im-
age onto an Android device using fastboot and adb via
USB [55, 50]. MACTANS [37] augmented USB charg-
ers with USB host functionalities, allowing the injection
of malware into iOS devices during charging. Vidas et
al. summarized Android attacks via USB [54], although
the focus is mainly limited to adb. Due to OEM vulnera-
bilities in fastboot implementations, Hay also showed that
hidden USB functionalities can be enabled, including mo-
dem diagnostics and AT interfaces [31], allowing data ex-
filtration and system downgrading.

7 Conclusion

AT commands have become an integral part of the An-
droid ecosystem, yet the extent of their functionality is
unclear and poorly documented. In this paper, we sys-
tematically retrieve and extract AT commands from over
2,000 Android smartphone firmware images across 11
vendors to build a database of 3,500 commands. We test
this AT command corpus against 8 Android devices from
4 vendors via USB connections. We find different attacks
using AT commands, including firmware flashing, An-
droid security mechanism bypassing by making calls via
USB, unlocking screens, injecting touch events, exfiltrat-
ing sensitive data, etc. We demonstrate that the AT com-

13

mand interface contains an alarming amount of uncon-
strained functionality and represents a broad attack sur-
face on Android devices.

Disclosure We have notified each vendor of any rele-
vant findings and have worked with their security team to
address the issues.

Acknowledgments
This work was supported by the National Science Foun-
dation under grants CNS-1540217, CNS-1526718, CNS-
1564140, and CNS-1617474.

References
[1] baksmali. https://bitbucket.org/JesusFreke/smali.

Last Accessed: Feb. 2018.

[2] dex2jar. https://github.com/pxb1988/dex2jar. Last Ac-
cessed: Feb. 2018.

[3] FlashTool. http://www.flashtool.net. Last Accessed: Feb.
2018.

[4] jadx. https://github.com/skylot/jadx. Last Accessed:
Feb. 2018.

[5] jd-cmd - Command line Java Decompiler. https://

github.com/kwart/jd-cmd. Last Accessed: Feb. 2018.

[6] Lenovo QSB File splitter. https://forum.xda-
developers.com/showthread.php?t=2595269. Last
Accessed: Feb. 2018.

[7] LGE KDZ Utilities. https://github.com/ehem/kdztools.
Last Accessed: Feb. 2018.

[8] sdat2img. https://github.com/xpirt/sdat2img. Last Ac-
cessed: Feb. 2018.

[9] simg2img. https://github.com/anestisb/android-
simg2img. Last Accessed: Feb. 2018.

[10] splitupdate. https://github.com/jenkins-84/
split updata.pl. Last Accessed: Feb. 2018.

[11] szbtool. https://github.com/yuanguo8/szbtool. Last Ac-
cessed: Feb. 2018.

[12] Universal HTC RUU/ROM Decryption Tool 3.6.8. https:

//forum.xda-developers.com/chef-central/android/
tool-universal-htc-ruu-rom-decryption-t3382928.
Last Accessed: Feb. 2018.

[13] unyaffs. https://github.com/ehlers/unyaffs. Last Ac-
cessed: Feb. 2018.

[14] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang,
X. Zhou, W. Du, and M. Grace. Hare Hunting in the Wild An-
droid: A Study on the Threat of Hanging Attribute References. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1248–1259. ACM, 2015.

[15] Y. Aafer, X. Zhang, and W. Du. Harvesting Inconsistent Security
Configurations in Custom Android ROMs via Differential Analy-
sis. In USENIX Security Symposium, pages 1153–1168, 2016.

[16] ActiveXperts Software. Basic Hayes AT Command Set. https:
//www.activexperts.com/sms-component/at/basic/,
2018.

[17] ActiveXperts Software. Extended AT Command Set. https:

//www.activexperts.com/sms-component/at/extended/,
2018.

[18] ActiveXperts Software. Proprietary Sony Ericsson AT Command
Set. https://www.activexperts.com/sms-component/at/
sonyericsson/, 2018.

[19] M. Anderson and K. Olmstead. Many smartphone owners don’t
take steps to secure their devices, Mar. 2017. Pew Research Center.

[20] P. André, C. Manuel Eduardo, and B. Pedro. Charge your device
with the latest malware. BlackHat Europe, 2014.

[21] Burak Alakus. TO CONTROL YOUR MOBILE PHONE
BY AT COMMANDS VIA BLUETOOTH (C#.NET).
https://burakalakusen.wordpress.com/2011/07/27/
to-control-your-mobile-phone-by-at-commands-

via-bluetooth/, 2011.

[22] CVE. CVE-2013-3666. https://www.cvedetails.com/cve/
CVE-2013-3666/, 2013.

[23] O. Davydov. Unlocking The Screen of an LG Android Smartphone
with AT Modem Commands, Feb. 2017. Forensic Focus Blog.

[24] F. Durda IV. The AT Command Set Reference - History. https:
//nemesis.lonestar.org, 2004.

[25] ETSI. Digital cellular telecommunications system (Phase 2+);
Use of Data Terminal Equipment - Data Circuit terminating;
Equipment (DTE - DCE) interface for Short Message Service
(SMS) and Cell Broadcast Service (CBS) (GSM 07.05 ver-
sion 5.5.0). http://www.etsi.org/deliver/etsi gts/07/

0705/05.03.00 60/gsmts 0705v050300p.pdf, 1997.

[26] ETSI. Digital cellular telecommunications system (Phase
2+); AT Command set for GSM Mobile Equipment
(ME) (3GPP TS 07.07 version 7.8.0 Release 1998).
http://www.etsi.org/deliver/etsi ts/100900 100999/

100916/07.08.00 60/ts 100916v070800p.pdf, 2003.

[27] ETSI. Digital cellular telecommunications system (Phase
2+) (GSM); Universal Mobile Telecommunications Sys-
tem (UMTS); LTE; AT command set for User Equip-
ment (UE) (3GPP TS 27.007 version 13.6.0 Release 13).
http://www.etsi.org/deliver/etsi ts/127000 127099/

127007/13.06.00 60/ts 127007v130600p.pdf, 2017.

[28] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In Proceedings of the 18th ACM confer-
ence on Computer and communications security, pages 627–638.
ACM, 2011.

[29] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Per-
mission re-delegation: Attacks and defenses. In USENIX Security
Symposium, volume 30, 2011.

[30] A. Ganti. Latest Samsung Galaxy Note 8 Bootloader Pre-
vents Flashing Unsigned Firmware on Device. https://

wccftech.com/latest-samsung-galaxy-s8-s8-note8-
bootloader-prevents-flashing-new-firmware/, 2018.

[31] R. Hay. fastboot OEM vuln: Android Bootloader Vulnerabilities in
Vendor Customizations. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17). USENIX Association, 2017.

[32] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. Butler. Fir-
mUSB: Vetting USB Device Firmware using Domain Informed
Symbolic Execution. In 24th ACM Conference on Computer and
Communications Security (CCS’17), Dallas, USA, 2017.

[33] Intel. Installation instructions for the intel R© usb driver for
android* devices. https://software.intel.com/en-us/
android/articles/installation-instructions-for-

intel-android-usb-driver, 2015.

[34] IPFS. Motorola phone AT commands. https://ipfs.io/ipfs/
QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/

wiki/Motorola phone AT commands.html, 2014.

14

https://bitbucket.org/JesusFreke/smali
https://github.com/pxb1988/dex2jar
http://www.flashtool.net
https://github.com/skylot/jadx
https://github.com/kwart/jd-cmd
https://github.com/kwart/jd-cmd
https://forum.xda-developers.com/showthread.php?t=2595269
https://forum.xda-developers.com/showthread.php?t=2595269
https://github.com/ehem/kdztools
https://github.com/xpirt/sdat2img
https://github.com/anestisb/android-simg2img
https://github.com/anestisb/android-simg2img
https://github.com/jenkins-84/split_updata.pl
https://github.com/jenkins-84/split_updata.pl
https://github.com/yuanguo8/szbtool
https://forum.xda-developers.com/chef-central/android/tool-universal-htc-ruu-rom-decryption-t3382928
https://forum.xda-developers.com/chef-central/android/tool-universal-htc-ruu-rom-decryption-t3382928
https://forum.xda-developers.com/chef-central/android/tool-universal-htc-ruu-rom-decryption-t3382928
https://github.com/ehlers/unyaffs
https://www.activexperts.com/sms-component/at/basic/
https://www.activexperts.com/sms-component/at/basic/
https://www.activexperts.com/sms-component/at/extended/
https://www.activexperts.com/sms-component/at/extended/
https://www.activexperts.com/sms-component/at/sonyericsson/
https://www.activexperts.com/sms-component/at/sonyericsson/
https://burakalakusen.wordpress.com/2011/07/27/to-control-your-mobile-phone-by-at-commands-via-bluetooth/
https://burakalakusen.wordpress.com/2011/07/27/to-control-your-mobile-phone-by-at-commands-via-bluetooth/
https://burakalakusen.wordpress.com/2011/07/27/to-control-your-mobile-phone-by-at-commands-via-bluetooth/
https://www.cvedetails.com/cve/CVE-2013-3666/
https://www.cvedetails.com/cve/CVE-2013-3666/
https://nemesis.lonestar.org
https://nemesis.lonestar.org
http://www.etsi.org/deliver/etsi_gts/07/0705/05.03.00_60/gsmts_0705v050300p.pdf
http://www.etsi.org/deliver/etsi_gts/07/0705/05.03.00_60/gsmts_0705v050300p.pdf
http://www.etsi.org/deliver/etsi_ts/100900_100999/100916/07.08.00_60/ts_100916v070800p.pdf
http://www.etsi.org/deliver/etsi_ts/100900_100999/100916/07.08.00_60/ts_100916v070800p.pdf
http://www.etsi.org/deliver/etsi_ts/127000_127099/127007/13.06.00_60/ts_127007v130600p.pdf
http://www.etsi.org/deliver/etsi_ts/127000_127099/127007/13.06.00_60/ts_127007v130600p.pdf
https://wccftech.com/latest-samsung-galaxy-s8-s8-note8-bootloader-prevents-flashing-new-firmware/
https://wccftech.com/latest-samsung-galaxy-s8-s8-note8-bootloader-prevents-flashing-new-firmware/
https://wccftech.com/latest-samsung-galaxy-s8-s8-note8-bootloader-prevents-flashing-new-firmware/
https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-android-usb-driver
https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-android-usb-driver
https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-android-usb-driver
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Motorola_phone_AT_commands.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Motorola_phone_AT_commands.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Motorola_phone_AT_commands.html

[35] ITU-T. Serial asynchronous automatic dialling and con-
trol. https://www.itu.int/rec/dologin pub.asp?lang=
e&id=T-REC-V.250-200307-I!!PDF-E&type=items, 2003.

[36] J. Jelinek, A. Van de Ven, U. Drepper, and D. Novillo. Object size
checking to prevent (some) buffer overflows, Sept. 2004. GCC
Patches List.

[37] B. Lau, Y. Jang, C. Song, T. Wang, P. Chung, and P. Royal. Mac-
tans: Injecting Malware into iOS Devices via Malicious Chargers.
Proceedings of the Black Hat USA Briefings, Las Vegas, NV, Au-
gust 2013, 2013.

[38] A. Laurie, M. Holtmann, and M. Herfurt. The bluebug. AL Digital
Ltd. http://trifinite. org/trifinite stuff bluebug. html.

[39] LG. LGUP. https://www.mylgphones.com/download-lg-
up-software, 2017.

[40] Messagestick. TECHNICAL REFERENCE FOR HAYES
MODEMS. http://www.messagestick.net/modem/
hayes modem.html, 1992.

[41] S. Mickey, M. Jesse, and B. Oleksandr. Driving down the rabbit
hole. In DEF CON 25, 2017.

[42] MultiTech Systems. AT Commands For CDMA Wire-
less Modems. http://www.canarysystems.com/nsupport/
CDMA AT Commands.pdf, 2004.

[43] MultiTech Systems. EV-DO and CDMA AT Commands Ref-
erence Guide. https://www.multitech.com/documents/
publications/manuals/s000546.pdf, 2015.

[44] K. Nohl and J. Lell. BadUSB-On accessories that turn evil. Black
Hat USA, 2014.

[45] Openmoko. Neo 1973 and Neo FreeRunner GSM
modem. http://wiki.openmoko.org/wiki/
Neo 1973 and Neo FreeRunner gsm modem, 2012.

[46] A. Pereira, M. Correia, and P. Brandão. USB Connection Vul-
nerabilities on Android Smartphones: Default and Vendors’ Cus-
tomizations. In IFIP International Conference on Communica-
tions and Multimedia Security, pages 19–32. Springer, 2014.

[47] P. Roberto and F. Aristide. Modem interface exposed
via USB. https://github.com/ud2/advisories/tree/
master/android/samsung/nocve-2016-0004, 2016.

[48] Samsung. Samsung Odin. https://samsungodin.com/, 2017.

[49] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The misuse of
android unix domain sockets and security implications. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 80–91. ACM, 2016.

[50] A. Stavrou and Z. Wang. Exploiting Smart-Phone USB Connec-
tivity For Fun And Profit. BlackHat DC, 2011.

[51] Telit wireless solutions. xN930 AT Command Refer-
ence Guide. http://www.iot.com.tr/uploads/pdf/
Telit xN930 AT Commands Reference Guide r1.pdf,
2013.

[52] D. J. Tian, A. Bates, and K. Butler. Defending Against Malicious
USB Firmware with GoodUSB. In Proceedings of the 31st An-
nual Computer Security Applications Conference, pages 261–270.
ACM, 2015.

[53] D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor. Making
USB Great Again with USBFILTER. In USENIX Security Sympo-
sium, 2016.

[54] T. Vidas, D. Votipka, and N. Christin. All Your Droid Are Belong
to Us: A Survey of Current Android Attacks. In WOOT, pages
81–90, 2011.

[55] Z. Wang and A. Stavrou. Exploiting Smart-Phone USB Connec-
tivity For Fun And Profit. In Proceedings of the 26th Annual Com-
puter Security Applications Conference, pages 357–366. ACM,
2010.

[56] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The Impact of
Vendor Customizations on Android Security. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communica-
tions security, pages 623–634. ACM, 2013.

[57] XDA Developers. New Samsung Galaxy S8, S8+, and Note8
Bootloader Prevents Flashing Out of Region Firmware.
https://www.xda-developers.com/samsung-galaxy-
s8-note8-bootloader-odin/, 2018.

[58] XDA Forums. How to talk to the Modem with AT com-
mands. https://forum.xda-developers.com/galaxy-s2/
help/how-to-talk-to-modem-commands-t1471241, 2012.

[59] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The Peril of
Fragmentation: Security Hazards in Android Device Driver Cus-
tomizations. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 409–423. IEEE, 2014.

15

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.250-200307-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.250-200307-I!!PDF-E&type=items
https://www.mylgphones.com/download-lg-up-software
https://www.mylgphones.com/download-lg-up-software
http://www.messagestick.net/modem/hayes_modem.html
http://www.messagestick.net/modem/hayes_modem.html
http://www.canarysystems.com/nsupport/CDMA_AT_Commands.pdf
http://www.canarysystems.com/nsupport/CDMA_AT_Commands.pdf
https://www.multitech.com/documents/publications/manuals/s000546.pdf
https://www.multitech.com/documents/publications/manuals/s000546.pdf
http://wiki.openmoko.org/wiki/Neo_1973_and_Neo_FreeRunner_gsm_modem
http://wiki.openmoko.org/wiki/Neo_1973_and_Neo_FreeRunner_gsm_modem
https://github.com/ud2/advisories/tree/master/android/samsung/nocve-2016-0004
https://github.com/ud2/advisories/tree/master/android/samsung/nocve-2016-0004
https://samsungodin.com/
http://www.iot.com.tr/uploads/pdf/Telit_xN930_AT_Commands_Reference_Guide_r1.pdf
http://www.iot.com.tr/uploads/pdf/Telit_xN930_AT_Commands_Reference_Guide_r1.pdf
https://www.xda-developers.com/samsung-galaxy-s8-note8-bootloader-odin/
https://www.xda-developers.com/samsung-galaxy-s8-note8-bootloader-odin/
https://forum.xda-developers.com/galaxy-s2/help/how-to-talk-to-modem-commands-t1471241
https://forum.xda-developers.com/galaxy-s2/help/how-to-talk-to-modem-commands-t1471241

A Additional Implementation Details

A.1 AT Extraction Details
Some limitations of our extraction include potentially
missing AT commands, images that fail to extract, and
missing build.prop files. Given our AT command regular
expression and the symbol set we use, we may miss com-
mands using a non-standard symbol following the AT. In
practice, we observe from AT command standards, ex-
isting online AT databases, manual analysis in IDA Pro,
Google searches, and more permissive regular expres-
sions that the vast majority of extended AT commands
found in the wild are uppercase and use one of the sym-
bols [+*!@#$%ˆ&] matched by our expression. Despite
this, if new valid patterns are found in the future, they can
be easily added to our regular expression.

Images that fail to extract completely are still ana-
lyzed for strings, but if they are compressed, detecting
any matches will be impossible. If an image is missing
a build.prop file, we do not include it in our dataset, as
this may be indicative of an invalid Android image, since
all AOSP images are mandated to contain this file.

A.2 AT Database Filtering
Filtering Heuristic

cmd := String

f ile := AtFile

charclass=

{
e−0.4∗(cmd::len−3), cmd::class3{alnum}
0, otherwise

f ile score=
f ile::badlines

f ile::lines
· map
[0,1]

(e0.05∗ f ile::lines−1)

at score= 10·(map
[0,1]

(charclass)+ f ile score)

We defineString andAtFile as types, var::attr as ac-
cessing the attribute attr of var, and the map

[x,y]
(n) function

to clamp n to the range x≤n≤y.
In practice we observe that it is less common for an AT

command to have digits ([0-9]) and lower case letters ([a-
z]) in the same command. We punish commands match-
ing this with an exponential decay term in terms of a con-
stant and the command length with the charclass metric.
The minimum command that would be scored is three (3)
characters, hence the subtraction of three. The larger the
candidate AT command, the less it is punished, as the like-
lihood that the command is not random noise increases
with each character.

For the f ile score metric, we record every line found
that fails the initial regular expression test and increase
the f ile::badlines variable. For each line, regardless of
it failing or passing, we increase the f ile::lines variable.

This creates a false positive percentage for the file. We in-
crease the confidence of this FP score exponentially based
off of the number of lines seen in the file and a constant of
our choosing.

Finally we sum and weight the charclass and
f ile score metrics to create a final at score (a lower score
means that it is less likely to be spurious). For future
processing, we set the spurious command threshold to be
at score≥5.0. Through manual inspection we found this
balances the number of false negatives (actual commands
discarded) and false positives (bad commands accepted).

Filtering Results During the initial extraction of
firmware images, we used strings to match on lines
matching the regular expression AT[!@#$%^&*+]. To
narrow down on actual AT commands, we applied the
heavier regular expression, which eliminated 33.2% of
all processed lines, as shown in Table 15. To further
refine our matching and eliminate classes of frequently-
appearing commands, we applied our heuristic to dis-
card additional matches that passed the regular expres-
sion. This heuristic eliminated an additional 2.4% of all
processed lines and brought the total unique AT command
count down from 4,654 to 3,500, a 24.8% reduction. With
less invalid commands matched, our analytics were not
skewed and our AT command testing was faster.

Due to how the heuristic is implemented, it only has
memory of firmware image file score across a single ven-
dor. Also, it is possible for invalid commands to avoid
this check by appearing early in a file without a score or in
a file with a good score. This is a limitation and could be
improved by additional feature checking, multiple passes,
and blacklisting. In our work we found the heuristic de-
veloped to be sufficient for our purposes. Additionally,
we spot-checked the spurious commands and their corre-
sponding at score to make sure that large amounts of valid
commands were not being discarded. Overall, we pur-
posefully avoided any manual filtering to make importing
new datasets fast and less labor intensive.

A.3 Android Firmware Acquisition
Vendors such as Google and ASUS list all of their fac-
tory images for download on their official websites. A
combination of URL extraction from the HTML page
plus wget allows us to efficiently gather and download
each image. Other vendors do not provide their Android
firmware downloading directly. In these cases, we refer to
third-party websites (e.g., AndroidMTK.com) which col-
lect Android firmware images from various vendors.

For these third-parties, the actual download URL is
usually found after jumping through multiple site redirec-
tions, clicking JavaScript buttons, avoiding rogue down-
load buttons, and passing Turing tests. Images themselves

16

2.
1

2.
2

2.
3

3.
2

4.
0

4.
1

4.
2

4.
3

4.
4

5.
0

5.
1

6.
0

7.
0

7.
1

Android Version

0

50

100

150

200

250

300

350
Im

ag
e

Co
un

t

Android Version Distribution

Figure 7: Android Version Distribution.

are usually hosted by cloud storage services such as Me-
diaFire or AndroidFileHost. Effectively, all of the images
we have gathered are publicly available with some effort
on categorizing and collecting valid URLs for download.

Factory/stock firmware is available on the official ven-
dor sites for ASUS, Google, and HTC. For all other ven-
dors, we rely on third-party sites that collect firmware im-
ages, among which we choose sites that claim to host only
stock firmware. We download firmware from sources
listed in Table 12.
Firmware Version Distribution. The Android version
distribution across all collected factory images is pre-
sented in Figure 7. Versions 4.x, 5.x, 6.x, and 7.x make
up the largest percentage of all images, with over 200 im-
ages of Versions 4.4, 6.0, and 7.1. We do not prioritize
specific versions during the image crawling process. The
version distribution of our dataset appears to reflect main-
stream Android devices that are still in use, e.g., Google
Nexus series (4.x and 5.x), LG G series (6.x), and the lat-
est Samsung Galaxy series (7.x). Note that Android 8.x
(Oreo) is intentionally excluded since most vendors had
not started rolling out their updates by the time of writing.

Vendor Download URL

ASUS https://www.asus.com/support
Google https://developers.google.com/android/

images
HTC http://www.htc.com/us/support/rom-

downloads.html
http://www.htc.com/us/support/updates.aspx

Huawei https://androidmtk.com/download-huawei-
stock-rom-for-all-models

Lenovo https://androidmtk.com/download-lenovo-
stock-rom-models

LG http://devtester.ro/projects/lg-firmwares/
LineageOS https://download.lineageos.org/
Motorola https://firmware.center/firmware/Motorola/
Samsung https://androidmtk.com/download-samsung-

stock-rom
Sony http://www.firmwaremobile.com/index.php/

xperiadownload/
ZTE https://freeandroidroot.com/download-zte-

stock-rom-firmware/

Table 12: A list of online resources from which we down-
loaded Android stock firmware.

Aggregation
(2018)

Google (447) Samsung
(373)

LG (150)

AT+CLCC
(2011)

AT+CGEREP
(447)

AT+COPS
(373)

AT+WNAM
(150)

AT+CHLD
(2011)

AT+CSQ (447) AT+CLCC
(373)

AT%GYRO
(150)

AT+VTS
(2010)

AT+CGDCON
T (447)

AT+CGSN
(373)

AT%FUSG
(150)

AT+COPS
(2007)

AT+CHLD
(447)

AT+CCWA
(373)

AT%NCM
(150)

AT+CCWA
(2007)

AT+COPS
(447)

AT+CHLD
(373)

AT%LGATSE
RVICE (150)

AT+CMEE
(2005)

AT+CGREG
(447)

AT+VTS (373) AT%SIMID
(150)

AT+CGSN
(1996)

AT+CGACT
(447)

AT+CMEE
(373)

AT%MLT
(150)

AT+CMGS
(1969)

AT+CMUT
(447)

AT+DEVCON
INFO (370)

AT+BTRH
(150)

AT+CFUN
(1968)

AT+CGSN
(447)

AT+PROF
(368)

AT%MMCFO
RMAT (150)

AT+CMGW
(1967)

AT+CSMS
(447)

AT+SYNCML
(367)

AT%MDMLO
G (150)

Table 13: Top 10 ATcmds (frequency#) in Aggregation,
Google, Samsung, and LG.

17

https://www.asus.com/support
https://developers.google.com/android/images
https://developers.google.com/android/images
http://www.htc.com/us/support/rom-downloads.html
http://www.htc.com/us/support/rom-downloads.html
http://www.htc.com/us/support/updates.aspx
https://androidmtk.com/download-huawei-stock-rom-for-all-models
https://androidmtk.com/download-huawei-stock-rom-for-all-models
https://androidmtk.com/download-lenovo-stock-rom-models
https://androidmtk.com/download-lenovo-stock-rom-models
http://devtester.ro/projects/lg-firmwares/
https://download.lineageos.org/
https://firmware.center/firmware/Motorola/
https://androidmtk.com/download-samsung-stock-rom
https://androidmtk.com/download-samsung-stock-rom
http://www.firmwaremobile.com/index.php/xperiadownload/
http://www.firmwaremobile.com/index.php/xperiadownload/
https://freeandroidroot.com/download-zte-stock-rom-firmware/
https://freeandroidroot.com/download-zte-stock-rom-firmware/

Command Action Tested Phones

ATI Manufacturer, model,
revision, SVN, IMEI

G4/S8+/Nexus5
ZenPhone2

AT%IMEI IMEI information G3/G4
AT%SYSCAT Read and return data

from /sys/*
G3/G4

AT%PROCCAT Read and return data
from /proc/*

G3/G4

AT+BATGETLEVEL? Battery information Note2/S7Edge/S8+
AT+CGMM Phone model G3/Note2/S8+/

Nexus5/ZenPhone2
AT+CGSN Serial number Note2/ZenPhone2/

ZenPad
AT+DEVCONINFO Phone model, serial

number, IMEI, and etc.
Note2/S7Edge/S8+

AT+GMR Phone model G3/G4/Note2
S8+/ZenPhone2

AT+GSN Serial number G4/Note2/S7Edge/S8+/
ZenPhone2/ZenPad

AT+GSNR Serial number Note2/S7Edge/S8+
AT+GSNW Serial number Note2/S7Edge/S8+
AT+IMEINUM IMEI number Note2/S7Edge/S8+
AT+SERIALNO Serial number Note2/S7Edge/S8+
AT+SIZECHECK Filesystem partition

information
Note2/S7Edge/S8+

AT+SVCIFPGM Partition information
and etc.

Note2/S7Edge/S8+

AT+SWVER Software version Note2/S7Edge/S8+
AT+GMM Phone model G3/G4/S7Edge/S8+/

ZenPhone2
AT+CGMI Manufacturer

identification
G3/S7Edge/S8+/
Nexus5/ZenPhone2

AT+CGMR Revision identification G3/S7Edge/S8+/
ZenPhone2

AT+GMI Manufacturer
identification

G3/G4/S8+/ZenPhone2

AT+VERSNAME Android version S7Edge/S8+
ATˆGSN Serial number G4/S8+/Nexus 5
ATˆHWVER Hardware version G3/G4/S8+/Nexus5
ATˆMEID Serial number S8+/Nexus5
ATˆSYSINFO System information S8+/Nexus5
AT+CLAC List all supported AT

commands
G3/G4/S7Edge/Nexus5/
ZenPad/ZenPhone2

AT+LIST List supported AT
commands

Nexus5

AT+ICCID Sim card ICCID G3/G4/Nexus5
AT$QCCLAC List all supported AT

commands
(Qualcomm-specific)

S8+/G4/Nexus5

AT%SWOV Software version G3
AT%SWV Software version G3
AT+CGSVN IMEI information ZenPhone2
AT+XGENDATA Software version ZenPhone2

Table 14: A selection of commands that leak sensitive in-
formation about the device.

Vendor Lines Processed Matched Invalid Spurious

ZTE 25,105 76.3% 21.4% 2.3%
HTC 25,690 24.1% 72.5% 3.3%
Sony 34,390 45.8% 50.2% 4.0%
LineageOS 41,739 62.9% 36.0% 1.2%
Motorola 70,356 50.0% 44.8% 5.3%
Huawei 78,432 79.7% 16.5% 3.8%
Google 133,003 42.1% 51.9% 6.0%
LG 171,578 41.1% 57.1% 1.9%
ASUS 201,996 62.4% 35.2% 2.4%
Lenovo 204,310 81.6% 16.8% 1.6%
Samsung 406,272 76.9% 21.9% 1.2%

Total 1,392,871 64.4% 33.2% 2.4%

Table 15: The results of filtering the lines retrieved by
grep (Lines Processed) using the AT regular expression
in Figure 4 (Matched vs. Invalid) and through applying
the at score heuristic (Spurious).

18

	Introduction
	Background
	AT Commands
	USB on Android
	Android USB Modem Interface
	Threat Model

	Design & Implementation
	AT Command Extraction
	Building an AT Command Database
	AT Command Testing Framework

	AT Command Analysis
	Firmware Analysis
	Runtime Vulnerability Analysis
	Firmware Flashing
	Android Security Bypassing
	Sensitive Information Leaking
	Modem AT Proxy
	Others

	Attacks

	Discussion
	Related Work
	Conclusion
	Additional Implementation Details
	AT Extraction Details
	AT Database Filtering
	Android Firmware Acquisition

