DRV-Fingerprinting

Using Data Retention Voltage of SRAM Cells for Chip Identification

Dan Holcomb¹, **Amir Rahmati**, Mastooreh Salajegheh, Wayne Burleson, Kevin Fu

1 UC Berkeley

Presented in RFIDSec'12

The Problem How can we identify/authenticate a chip?

Use Physical Characteristics

Store Identification Data

The Problem How can we identify/authenticate a chip?

Use Physical Characteristics

- ✓ Immutable
- Resistant to Cloning
- Resistant to Tampering

Physical Unclonable Functions

- SRAM Power-up State^(Holcomb'07)
- Flash Memory^(Prabhu'11)
- Statistical Delay Variations of

Wires and Transistors (Lee'04)

SRAM Power-up State

✓ Widely available

- ✓ Low cost and physically random
- X Need large sample size
- X Unreliable precision on small samples

Our Solution

a new method for chip fingerprinting that uses Data Retention Voltage (DRV) in SRAM as the identifier

SRAM Behavior

Amir Rahmati - DRVFP

Power-up Fingerprint

Amir Rahmati - DRVFP

DRV Fingerprints

Our Algorithm

- $\widehat{\mathbb{1}}$ Initialize SRAM to 1
- 2) Reduce voltage to 300mv
- ③ Increase voltage and check for bit

flips

- Repeat for voltages 290 10
- 5 Repeat for 0 initialization

Experimental Setup

DRV vs. Power-up: Info Density

SRAM Power-up	Entropy (bits per cell)
Ideal	1
Actual	0.06 ^[Holcomb'07]

Accuracy DRV vs. Power-up

- Find top match in Population of 240 16-bit fingerprints
 - 1 from target, 239 from other cells
 - Collected at room temperature
 - More than 300 trials
- DRV fingerprint:
 - 99.7% Correct Match
 - 0.3% Incorrect Match
- Power-up fingerprint:
 - 71.7% Correct Match
 - 24.7% Multiple Matches
 - 3.6% Incorrect Match

Precision and Recall

Conclusion

Data Retention Voltage as a new identification method

- ✓ Better Precision
- ✓ Smaller Sample Size
- **X** Harder to implement

Presented in RFIDSec 2012 https://spqr.cs.umass.edu

DRV entropy vs. Step size

Repeatability of common DRVs

17

Fingerprinting Model

• Distance metrics

- DRV : USE
$$d1(F_i, F_j) = \sum_{n=0}^{k-1} (v_{i+n}^0 - v_{j+n}^0)^2 + (v_{i+n}^1 - v_{j+n}^1)^2$$

- Power-up : use
$$hd(F_i, F_j) = \sum_{n=0}^{k-1} p_{i+n} \oplus p_{j+n}$$

 Within class pairings are largely distinguishable from between class pairings

Impact of Temperature

- Within class pairings taken at different temperatures
- Temperature increases distances of within class pairings

- If shift is predictable, can modify the distance metric for better matching
 - Not yet well-understood