DRV-Fingerprinting: Using Data Retention Voltage of SRAM Cells for Chip Identification

> Daniel E. Holcomb, UC Berkeley Amir Rahmati, UMass Amherst Mastooreh Salajegheh, UMass Amherst **Wayne P. Burleson, UMass Amherst** Kevin Fu, UMass Amherst/Univ. Michigan

#### http://spqr.cs.umass.edu/

RFIDsec12, Nijmegen, The Netherlands, July 3, 2012

### Motivation

- PUFs enable authentication of RFID devices
  - Low cost and physically random
  - Need uniqueness, reliability, security and efficiency
  - Numerous recent designs (RFIDSec, CHES, HOST, SECSI, DAC,...)
- Background:
  - Can we leverage intrinsic properties of circuit?
  - SRAM provides a convenient read-out mechanism
  - SRAM cells are increasingly variable in advanced CMOS
  - SRAM cells power-up to 1 or 0 fairly reliably on each chip.
- Problem: Can we improve success rate of chip ID based on SRAM variations?
- Idea: Rather than just observing power-up state, observe the voltage at which the decision occurs!





# A Brief History of PUFs

- Physical one-way functions,
  - Optical scattering [Pappu et al. Science 02]
- Physical unclonable functions in CMOS
  - Arbiter PUF[Gassend et al. CCS 02]
    - Additive model attacks [Lim MIT MS Thesis 03]
    - Improved Arbiter PUFs [Majzoobi et al. ICCAD 08]
      - Evolutionary algorithms [Ruhrmair et al. CCS 10]
    - Prevent modeling attacks by hiding CRPs
  - Errors must be corrected before any hashing
    - Helper data for error correction [Maes et al. CHES 09]
    - Index-based syndrome code for arbiter PUFs [Yu et al. D&T 10]
      - Adapted for SRAM PUFs [Hiller et al. HOST 12]
  - Physically obfuscated Keys (weak PUFs)
- Complete Survey [Maes and Verbauwhede, 2010]

## **SRAM Characterization**

- SRAM power-up fingerprint
  - Patented for characterizing circuits [Layman et al. 02]
  - Security applications proposed later
    - ID and TRNG [Holcomb et al. RFIDSec 07, TrComp 09]
    - Physically Obfuscated Key [Guajardo et al. CHES 07], Intrinsic ID
- Data Retention Voltage (DRV)
  - SRAM cells can not reliably retain state below a certain voltage (typically 200-300mV)
  - Optimal operation is at low voltage, but DRV failures prohibit ultra-low voltages [Qin et al. ISQED 04]
- Our contribution: DRV fingerprinting



#### SRAM Fingerprints – Power-up and DRV





- кесого́аs oniy ппаї state or power-up
- No knowledge of behavior as function of voltage
- DRV fingerprint
  - Record *highest* voltage v<sub>c</sub> of flip after each written state
    - Approximated using discrete test voltages (~10mV)
  - How long to remain at each voltage v<sub>c</sub>? (~2ms?)
    - Probably a function of temperature

## **Experimental Set up**

- Texas Instruments MSP430F2131 microcontroller (same family used in Umass Moo...)
  - 256 Bytes of SRAM (240 Bytes usable)
- Agilent U2541A-series data acquisition (DAQ)
- Thermal chamber and temperature sensor



#### DRV is More Informative than Power-up

- Consider outcomes for test voltages  $v_c^{0,1}$  with step  $\Delta = 10 \text{mV}$ 
  - 28 test voltages per written state,  $28^2 = 784$  total outcomes per cell





- DRV entropy depends on step size
  - 5.12 bits at 10mV
  - Usefulness will depend on repeatability
  - Too small a voltage step just captures noise
    - Increases characterization time



## Repeatability of common DRVs

- If a cell produces some given DRV, what will a 2<sup>nd</sup> DRV from same cell produce?
  - 2<sup>nd</sup> DRV sometimes matches target exactly (10mV step size)



**DRV** Fingerprinting

# 16-bit Fingerprints

• Distance metrics

- DRV : USE 
$$d1(F_i, F_j) = \sum_{n=0}^{k-1} (v_{i+n}^0 - v_{j+n}^0)^2 + (v_{i+n}^1 - v_{j+n}^1)^2$$

- Power-up : use 
$$hd(F_i, F_j) = \sum_{n=0}^{k-1} p_{i+n} \oplus p_{j+n}$$

• Within class pairings are largely distinguishable from between class pairings



## **Top Match Experiment**

- Find top match in Population of 240 16-bit fingerprints
  - 1 from target, 239 from other cells
  - Collected at room temperature
- DRV fingerprint:
  - 99.7% : top match is target
  - 0.3% : top match is not target
- Power-up fingerprint:
  - 71.7% : Closest distance is unique and is target
  - 24.7% : Multiple closest, including target
  - 3.6% : Target not closest distance







**DRV** Fingerprinting

## **Precision and Recall**

- Distance threshold *d* selects pairings
  - Guess that  $f_1$ ,  $f_2$  are same device if  $D(f_1, f_2) < d$
- As *d* increases, precision drops and recall increases
  - Sweep *d* for achievable precision/recall points

$$Precision(d) = \frac{D(f_1, f_2) < d \cap f_1 == f_2}{D(f_1, f_2) < d}$$

$$Recall(d) = \frac{D(f_1, f_2) < d \quad \cap \quad f_1 == f_2}{f_1 == f_2}$$

- Population of 1019 16-bit fingerprints
  - 19 match target, 1000 do not match
  - Sweep *d* for each random population



## Impact of Temperature

- Within class pairings taken at different temperatures
- Temperature increases distances of within class pairings





- If shift is predictable, can modify the distance metric for better matching
  - Not yet well-understood

**DRV** Fingerprinting

## Practical Issues

- Characterization procedure requires:
  - Test voltage generation v<sub>c</sub> = [Vdd, 20 mV],  $\Delta$  =10 mV
    - On-chip voltage generation, increasingly used in modern processors... but not at fine granularity
      - Techniques exist, with costs associated
    - Generate test voltages off-chip for smart cards
    - Leverage natural decay of voltage in RFID tags...
  - State that is persistent across test voltages
    - Write to Flash or other non-volatile memory
    - Or power DRV SRAM using separate power supply

# **Reliability Considerations**

- Want to minimize characterization time, without sacrificing reliability
  - Time spent at each voltage contributes to runtime
  - But must wait long enough for failures to surface
  - Conservatively allowed 5 seconds per test voltage
  - Literature hints that 2ms sufficient [Nourivand et al. TVLSI 12]
- Reliability of matching with temperature
  - Quantify whether DRV shifts are common-mode
  - Better matching algorithms or error correction
- Persistence of DRV fingerprints over lifetime of chip

### Discussion

- Can we generalize this to ANY arbitrary characterization procedure?
  - How to "Challenge" each chip?
    - Supply voltage
    - Temperature
    - Digital challenges
  - How to observe "Response"
    - SRAM readout
    - Arbiter result
    - Other?

- Metrics: uniqueness, reliability, security, efficiency

## Conclusions

- A new SRAM mechanism for ID or Physically obfuscated key
- Identification with fewer SRAM cells
- V Softer distance measure
  - Could lead to improved matching algorithm
  - Lower-cost error correction
- X Voltage generation
- X Runtime to take fingerprint