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Abstract

There is a trend towards running highly-sensitive pro-
grams in Trusted Execution Environment (TEE) such as
ARM TrustZone or Intel SGX. Such programs typically
run in the background and accept requests from less-trusted
input, e.g. a less-trusted program may request a sensitive
program to generate a cryptographic signature with a key
only accessible in the trusted environment. These programs
are often stateful. For example, before issuing a signature, a
trusted application may require several requests to be issued,
e.g. for initialization, to open a session, or to provide a proof
of identify. To generate good seeds and test such programs,
we propose Caterpillar, a system which uses a new concolic
approach we call “iterative concolic execution”. In this
presentation, we will present the principles behind this
system and some preliminary results.

I. INTRODUCTION

In this presentation, we consider a special class of pro-
grams which we call “stateful programs”. We define a state-
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ful program as “a daemon program which accepts requests -
from clients”. Some examples of stateful program are web °

servers, TLS stacks, and programs running in a Trusted Exe-
cution Environment (TEE) such as ARM TrustZone [1], In-
tel SGX [2], or smart cards (PKCS#11 [3]). For the purpose

of this talk, we focus on programs running in TEEs. These .

stateful programs, although smaller in size compared to
other programs in this class, are critical for secure execution
of applications such as payment apps, device attestation, and
device integrity. These programs provide their clients with
certain services that are shielded from less-trusted software.

A prime example of such programs is the Android “Key
Store”, which can be used by apps to generate and store i
keys, store sensitive data, and perform various cryptographic '

functions such as signing and signature validation.
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The threat model is that in cases where the Android OS »
is compromised, data stored in the shielded environment

should remain secure. Since these stateful programs accept |

queries from Android kernel and less-trusted Android apps,
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it is important to ensure that malicious requests cannot take

over the stateful program and violate the confidentiality of ”
the sensitive information. Listing 1 provides an example of a
stateful program. The program requires several functions to*
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be called in the right order. Each time a function is called,

it changes the internal state of the program. Only if the:

o

program is in a correct state can the next function go “deep”. *°
If we cannot go deep, the main logic of the function cannot

be explored by KLEE and the function in step ¢ will return s
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early. Consider funcy: it changes the state variable to reflect
changes made by the function. Then func, is called: if state
is not in a good state (i.e. func; was not called), func, returns
early and no states are explored by KLEE. On the contrary,
if state is in a good state, then f5 is called and KLEE can
explore the main logic of the function. More generally, when
calling func; in step ¢, previous functions in step 1 through
1 — 1 must have been called with meaningful parameters
so that the state changes in a way that will enable good
exploration of the next function func; 1.
The main contributions of this work are:

« We propose Caterpillar, a system that uses an iterative
concolic mode geared at testing “stateful programs”.

+« We show how to generate useful seeds that go “deep”
in the code for this sort of programs. These can then
be used for further symbolic exploration with KLEE or
as concrete seed for fuzzing, e.g. with AFL.

« We present a preliminary evaluation of the time/state
reduction using this method.

struct state = {0};
void statefulprog(struct *req, struct *resp) {
switch (req—>cmdId) {
CMD_1:
return funcl(req, resp);
CMD_2:
return func2(req, resp);
CMD_3:
return func3(req, resp);
CMD_4:
return func4(req, resp);
/]
}

}

int funcl(struct
fl(&state);
set_state_fl(&state);

xreq, struct xresp) {

return OK;

}

int func2(struct xreq, struct xresp) {
if ( !is_state_1(&state) ) return FAIL;
if ( !'f2(&state, req, resp) ) return FAIL;
set_state_f2(&state);

return OK;

}

int func3(struct *req, struct xresp) {

if ( lis_state_fl(&state) ) return FAIL;
if ( !is_state_f2(&state) ) return FAIL;



if ( !f3(&state, req, resp) ) return FAIL;
set_state_f3(&state);
return OK;
}
int func4(struct *req, struct xresp) {
if ( !is_state_fl(&state) ) return FAIL;
if ( lis_state_f2(&state) ) return FAIL;
if ( !is_state_f3(&state , req, resp) ) return
FAIL ;
if ( !'f4(&state, req, resp) ) return FAIL;
return OK;
}

Listing 1. Example of stateful program

II. CATERPILLAR

Running a stateful program symbolically through KLEE
results in lots of overhead as a lot of time will be spent
in states that have exited early in previous functions, and
will not lead to exploration of the function’s main logic. To
alleviate this problem, we use two key ideas:

o First, after exploration of func; in state ¢, we prune
off all states that are unsuccessful. The success of a
function is typically encoded in its return value or
in a local variable we can test before the function
returns. This allows us to reduce state explosion before
exploring the next function func;;.

e Second, we concretize the remaining (successful)
states, and reuse them as seeds in new runs of KLEE:
we start KLEE in replay mode only and switch to sym-
bolic execution at the start of the next function func;1
we want to explore. These seeds put the program under
analysis in a good state to explore func;41; and they
reduce the strain on the constraint solver as previous
functions are run concretely.

III. IMPLEMENTATION AND EVALUATION

We implemented Caterpillar using KLEE 3.4 and
LLVM 3.4. We use an LLVM pass to insert a call to KLEE’s
intrinsic klee_assume before the return of every function of
interest, i.e. func; in our example above. We made changes
to KLEE to be able to switch from “replay mode only” to
symbolic execution based on a function of interest given as
command line option. We then drive the iterative process
described in the previous function. That is, in each step ¢,
we use the seeds from step 7 — 1, start KLEE in replay mode
until we enter func; at which point we switch to symbolic
execution.

IV. PRESENTATION FORMAT

Our presentation at the KLEE workshop will be divided
in the following sections:

1) Overview of Stateful Programs: We will discuss stateful
programs, their unique characteristics, and their impor-
tance.

2) Iterative Concolic Execution: We will describe the idea
behind iterative concolic execution.

3) Implementation: We will present our implementation of
Caterpillar. This will include

e LLVM pass to insert calls to KLEE intrinsics
klee_assume in the original program.

o Changes made to KLEE: switch from seed mode to
symbolic mode based on function executed.

4) Preliminary Results: We will present some preliminary
results we have using the tool after running it on some
internal code base:

o Time reduction vs. naive symbolic execution vs.
symbolic execution with state pruning only

o State reduction vs. naive symbolic execution vs.
symbolic execution with state pruning only

o Bugs found

5) Limitations and Future Directions: We will talk about
certain limitation of the approach itself, as well as
limiting factors of our implementation:

e Order of calls to stateful functions

o Multi-step vs. single-step iteration at the moment

o Seed mode vs. symbolic is a binary choice in our
case: we must launch KLEE with each seed indi-
vidually. Support for multi-seed where certain states
are in seed mode and others in symbolic mode would
help. This will hopefully sparks some discussion on
the possibility to achieve this.

6) Future Work & Conclusion: We will sum up the current
state of this work and its limitations. We hope to start
discussion on the possible ways forward to improve
this tool.
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