
Good Bot, Bad Bot:
Characterizing Automated Browsing Activity

Xigao Li
Stony Brook University

Babak Amin Azad
Stony Brook University

Amir Rahmati
Stony Brook University

Nick Nikiforakis
Stony Brook University

Abstract—As the web keeps increasing in size, the number
of vulnerable and poorly-managed websites increases commensu-
rately. Attackers rely on armies of malicious bots to discover these
vulnerable websites, compromising their servers, and exfiltrating
sensitive user data. It is, therefore, crucial for the security of the
web to understand the population and behavior of malicious bots.

In this paper, we report on the design, implementation, and
results of Aristaeus, a system for deploying large numbers of
“honeysites”, i.e., websites that exist for the sole purpose of attract-
ing and recording bot traffic. Through a seven-month-long exper-
iment with 100 dedicated honeysites, Aristaeus recorded 26.4 mil-
lion requests sent by more than 287K unique IP addresses, with
76,396 of them belonging to clearly malicious bots. By analyzing
the type of requests and payloads that these bots send, we discover
that the average honeysite received more than 37K requests each
month, with more than 50% of these requests attempting to brute-
force credentials, fingerprint the deployed web applications, and
exploit large numbers of different vulnerabilities. By comparing
the declared identity of these bots with their TLS handshakes
and HTTP headers, we uncover that more than 86.2% of bots
are claiming to be Mozilla Firefox and Google Chrome, yet are
built on simple HTTP libraries and command-line tools.

I. INTRODUCTION

To cope with the rapid expansion of the web, both legitimate
operators, as well as malicious actors, rely on web bots (also
known as crawlers and spiders) to quickly and autonomously
discover online content. Legitimate services, such as search
engines, use bots to crawl websites and power their products.
Malicious actors also rely on bots to perform credential stuffing
attacks, identify sensitive files that are accidentally made public,
and probe web applications for known vulnerabilities [1], [2].
According to recent industry reports [3], bots are responsible
for 37.2% of the total website-related traffic, with malicious
bots being responsible for 64.7% of the overall bot traffic.

Given the abuse perpetrated by malicious bots, identifying
and stopping them is critical for the security of websites and
their users. Most existing bot-detection techniques rely on
differentiating bots from regular users, through supervised
and unsupervised ML techniques, based on features related
to how clients interact with websites (e.g., the speed and
type of resources requested) [4]–[6] as well as through
browser-fingerprinting techniques [7], [8].

In all of the aforementioned approaches, researchers need
to obtain a ground truth dataset of known bots and known
users to train systems to differentiate between them. This
requirement creates a circular dependency where one needs
a dataset resulting from accurate bot detection to be used for
accurate-bot detection. The adversarial nature of malicious bots,

their ability to claim arbitrary identities (e.g., via User-agent
header spoofing), and the automated or human-assisted solving
of CAPTCHAs make this a challenging task [9]–[11].

In this paper, we present a technique that sidesteps the issue
of differentiating between users and bots through the concept
of honeysites. Like traditional high-interaction honeypots, our
honeysites are fully functional websites hosting full-fledged
web applications placed on public IP address space (similar
to Canali and Balzarotti’s honeypot websites used to study the
exploitation and post-exploitation phases of web-application
attacks [12]). By registering domains that have never existed
before (thereby avoiding traffic due to residual trust [13]) and
never advertising these domains to human users, we ensure
that any traffic received on these honeysites will belong to
benign/malicious bots and potentially their operators. To scale
up this idea, we design and build Aristaeus,1 a system that
provides flexible remote deployment and management of
honeysites while augmenting the deployed web applications
with multiple vectors of client fingerprinting.

Using Aristaeus, we deploy 100 honeysites across the
globe, choosing five open-source web applications (WordPress,
Joomla, Drupal, PHPMyAdmin, and Webmin), which are
both widely popular and have been vulnerable to hundreds of
historical vulnerabilities, thereby making them attractive targets
for malicious bots. In a period of seven months (January 24 to
August 24, 2020) Aristaeus recorded 26.4 million bot requests
from 287,017 unique IP addresses, totaling more than 200 GB
of raw logs from websites that have zero organic user traffic.

By analyzing the received traffic, we discovered that from
the 37,753 requests that the average Aristaeus-managed
honeysite received per month, 21,523 (57%) were clearly
malicious. Among others, we observed 47,667 bots sending
unsolicited POST requests towards the login endpoints of our
deployed web applications, and uncovered 12,183 unique bot
IP addresses which engaged in web-application fingerprinting.
In the duration of our experiment, we observed the attempt to
exploit five new high-severity vulnerabilities, witnessing bots
weaponizing an exploit on the same day that it became public.

Furthermore, by analyzing the collected fingerprints and
attempting to match them with known browsers and automation
tools, we discovered that at least 86.2% of bots are lying
about their identity, i.e., their stated identity does not match
their TLS and HTTP-header fingerprints. Specifically, out

1Rustic god in Greek mythology caring over, among others, beekeepers.

of the 30,233 clients, which claimed to be either Chrome or
Firefox, we found that 86.2% are lying, with most matching
the fingerprints of common Go and Python HTTP libraries as
well as scriptable command-line tools (such as wget and curl).
Our main contributions are as follows:

• We design and implement Aristaeus, a system for
deploying and managing honeysites. Using Aristaeus, we
deploy 100 honeysites across the globe, obtaining unique
insights into the populations and behavior of benign and
malicious bots.

• We extract URLs from exploit databases and web-
application fingerprinting tools and correlate them with
the requests recorded by Aristaeus, discovering that more
than 25,502 bots engage in either fingerprinting, or the
exploitation of high-severity, server-side vulnerabilities.

• We curate TLS signatures of common browsers and
automation tools, and use them to uncover the true
identity of bots visiting our infrastructure. We find that
the vast majority of bots are built using common HTTP
libraries but claim to be popular browsers. Our results
demonstrate the effectiveness of TLS fingerprinting for
identifying and differentiating users from malicious bots.

Given the difficulty of differentiating between users and
bots on production websites, we will be sharing our curated,
bot-only dataset with other researchers to help them improve
the quality of current and future bot-detection tools.

II. BACKGROUND

Unsolicited requests have become a fixture of the web-
hosting experience. These requests usually originate from bots
with various benign and malicious intentions. On the benign
side, search-engine bots crawl websites to index content for
their services, while large-scale research projects use bots to
collect general statistics. At the same time, malicious actors
use bots to identify and exploit vulnerabilities on a large scale.
Moreover, high-profile websites are victims of targeted bot
attacks that seek to scrape their content and target user accounts.

Bots and automated browsing. An automated browsing
environment can be as rudimentary as wget or curl requests, or
be as involved as full browsers, controlled programmatically
through libraries such as Selenium [14]. The underlying bot
platforms and their configuration defines the capabilities of
a bot in terms of loading and executing certain resources such
as JavaScript code, images, and Cascading Style Sheets (CSS).
As we show in this paper, the capabilities and behavior of
these platforms can be used to identify them.

Browser fingerprinting. Malicious bots can lie about their
identity. Prior work has proposed detection schemes based on
browser fingerprinting and behavioral analysis to extract static
signatures as well as features that can be used in ML models.

Browser fingerprinting is an integral part of bot detection.
Previous research has focused on many aspects of browsing
environments that make them unique [15]–[17]. The same
techniques have also been used for stateless user tracking by
ad networks, focusing on features that are likely to produce
different results for different users, such as, the supported

JavaScript APIs, list of plugins and browser extensions,
available fonts, and canvas renderings [15], [18], [19].

TLS fingerprinting. Similarly, the underlying browser and
operating systems can be fingerprinted at the network layer
by capitalizing on the TLS differences between browsers
and environments [20]. Durumeric et al. used discrepancies
between the declared user-agent of a connection and the used
TLS handshake to identify HTTPS interception [21]. In this
paper, we show how TLS signatures (consisting of TLS version,
list of available cipher suites, signature algorithms, e-curves,
and compression methods) can be used to identify the true
nature of malicious bots, regardless of their claimed identities.

Behavioral analysis. Next to browser and TLS
fingerprinting, the behavior of bots on the target website can
signal the presence of automated browsing. To that end, features
such as the request rate, requests towards critical endpoints
(e.g., login endpoint), and even mouse moves and keystrokes
have been used by prior bot-detection schemes [4], [5], [22].

Browsing sessions. To study the behavior of bots, we need
a mechanism to group together subsequent requests from the
same bot. While source IP address can be used for that purpose,
in a large-scale study, the IP churn over time can result in
false positives where an address changes hands and ends up
being used by different entities. To address this issue, we used
the notion of “browsing sessions” as used by server-side web
applications and also defined by Google Analytics [23]. For
each IP address, we start a session upon receiving a request and
end it after 30 minutes of inactivity. This allows for an organic
split of the active browsing behavior into groups. Grouping
requests from the same bot in a session enables us to analyze
activities, such as, changes in a bot’s claimed identity and mul-
tiple requests that are part of a credential, brute-forcing attack.

III. SYSTEM DESIGN

To collect global bot information, we design Aristaeus, a
system that provides flexible honeysite deployment and finger-
print collection. Aristaeus consists of three parts: honeysites,
log aggregation, and analysis modules. Our system can launch
an arbitrary number of honeysites based on user-provided
templates, i.e., sets of existing/custom-made web applications
and scripts using virtual machines on public clouds. Aristaeus
augments these templates with multiple fingerprinting modules
that collect a wide range of information for each visiting client.
The information collected from honeysites is periodically
pulled by a central server, which is responsible for correlating
and aggregating the data collected from all active honeysites.
Figure 1 presents the overall architecture of our system.
A. Honeysite Design

A honeysite is a real deployment of a web application,
augmented with different fingerprinting techniques, and
increased logging. Like traditional honeypots, our honeysites
are never advertised to real users, nor linked to by other
sites or submitted to search engines for listing. If a honeysite
includes publicly-accessible, user-generated content (such as a
typical CMS showing blog posts), Aristaeus creates randomly-
generated text and populates the main page of the honeysite.

1. Deploy honeysites

Automated browsers

2. Log aggregation 3. Bot traffic analysis

TLS Apache CSP JS

Log	SourcesHoneysites

Aristaeus	Control	Center

Website	Templates
Domain	Registration	Module
Name	Servers

Bots

Scripts & CMD tools

Other
bots

Log	Aggregation

Log	Correlation
Querying	Panel
Session	Generation

Bot signatures

Traffic analysis

Analysis	Engine

New	Honeysites

Current	Honeysites

Fig. 1: High-level overview of the architecture of Aristaeus

Lastly, to ensure that the traffic a honeysite is receiving is
not because its domain name used to exist (and therefore
there are residual-trust and residual-traffic issues associated
with it [13]) all domains that we register for Aristaeus, were
never registered before. To ensure this, we used a commercial
passive-DNS provider and searched for the absence of
historical resolutions before registering a domain name. As a
result, any traffic that we observe on a honeysite can be safely
characterized as belonging either to bots, or to bot-operators
who decided to investigate what their bots discovered.

To be able to later correlate requests originating from
different IP addresses as belonging to the same bot that changed
its IP address or from a different deployment of the same
automated-browsing software, Aristaeus augments honeysites
with three types of fingerprinting: browser fingerprinting,
behavior fingerprinting, and TLS fingerprinting. Figure 2
shows how these different types of fingerprinting interface with
a honeysite. We provide details and the rationale about each
of these fingerprinting modules in the following paragraphs:
1) Browser fingerprinting

To fingerprint each browser (or automated agent) that
requests content from our honeysites, we use the following
methods.

JavaScript API support. Different bots have different
capabilities. To identify a baseline of supported features of
their JavaScript engine, we dynamically include an image using
document.write() and var img APIs, and verify whether the con-
necting agent requests that resource. We also check for AJAX
support by sending POST requests from the jQuery library that
is included on the page. Lastly, we use a combination of inline
JavaScript and external JavaScript files to quantify whether
inline and externally-loaded JavaScript files are supported.

Browser fingerprinting through JavaScript. We utilize
the Fingerprintjs2 (FPJS2) library [24] to analyze the finger-
printable surface of bots. FPJS2 collects 35 features from web
browsers, including information about the screen resolution,
time zone, creation of canvas, webGL, and other features that
can be queried through JavaScript. To do that, FPJS2 relies on
a list of JavaScript APIs. Even though in a typical browsing
environment these APIs are readily available, there are no
guarantees that all connecting clients have complete JavaScript
support. For instance, the WeChat embedded browser is unable

to execute OfflineAudioContext from FPJS2, breaking the entire
fingerprinting script. To address this issue, we modularized
FPJS2 in a way that the library would survive as many failures
as possible but still collect values for the APIs that are available.
Naturally, if a bot does not support JavaScript at all, we will
not be able to collect any fingerprints from it using this method.

Support for security policies. Modern browsers support a
gamut of security mechanisms, typically controlled via HTTP
response headers, to protect users and web applications against
attacks. Aristaeus uses these mechanisms as a novel fingerprint-
ing technique, with the expectation that different bots exhibit
different levels of security-mechanism support. Specifically, we
test the support of a simple Content Security Policy and the
enforcement of X-Frame-Options by requesting resources that
are explicitly disallowed by these policies [25], [26]. To the best
of our knowledge, this is the first time these mechanisms have
been used for a purpose other than securing web applications.
2) Behavior fingerprinting

Honoring robots.txt. Benign bots are expected to follow
the directives of robots.txt (i.e., do not visit the paths explicitly
marked with Disallow). Contrastingly, it is well known
that malicious bots can not only ignore these Disallow
directives but also use robots.txt to identify end-points that
they would have otherwise missed [27]. To test this, Aristaeus
automatically appends to the robots.txt files of each honeysite
Disallow entries to a “password.txt” file, whose exact path
encodes the IP address of the agent requesting that file. This
enables Aristaeus to not only discover abuses of robots.txt but
also identify a common bot operator behind two seemingly
unrelated requests. That is, if a bot with IP address 5.6.7.8
requests a robots.txt entry that was generated for a different
bot with IP address 1.2.3.4, we can later deduce that both of
these requests belonged to the same operator.

Customized error pages. To ensure that Aristaeus gets
a chance to fingerprint bots that are targeting specific web
applications (and therefore request resources that generate
HTTP 404 messages), we use custom 404 pages that incorporate
all of the fingerprinting techniques described in this section.

Caching and resource sharing. Regular browsers use
caching to decrease the page load time and load resources
that are reused across web pages more efficiently. The use

OS/Network Stack FingerprinTLS

Apache Perl

 Common Fingerprint Code

Web application

Fingerprint Design

Browser Fingerprint

Behavior Analysis

TLS Fingerprint

Honeysite Implementation

Fig. 2: Internal design of each honeysite.

of caching can complicate our analysis of logs as we rely
on HTTP requests to identify which features are supported
by bots. To eliminate these effects, we use the “no-cache”
header to ask agents not to cache resources, and we append
a dynamic, cache-breaking token at the end of the URLs for
each resource on a page.

Cache breakers are generated by encrypting the client IP
address and a random nonce using AES and then base64-
encoding the output; this makes every URL to the same
resource unique. For example, if a bot asks for the resource
a.jpg, it will send a request in the format /a.jpg?r=[endoded
IP+nonce]. During our analysis, we decrypt the cache
breakers and obtain the original IP address that requested
these resources. Using this information, we can pinpoint any
resource sharing that occurred across multiple IP addresses.
This happens when a resource is requested from one IP
address but the cache breaker points to a different IP address.
3) TLS fingerprinting

We use the fingeprinTLS [20] (FPTLS) library to collect
TLS handshake fingerprints from the underlying TLS library
of each client that connects to our honeysites over the HTTPS
protocol. From each connection, FPTLS gathers fields such
as TLS version, cipher suites, E-curves, and compression
length. The motivation for collecting TLS fingerprints is that
different TLS libraries have different characteristics that can
allow us to later attribute requests back to the same software
or the same machine. This type of fingerprinting is performed
passively (i.e., the connecting agents already send all details
that FPTLS logs as part of their TLS handshakes) and can be
collected by virtually all clients that request content from our
honeysites. This is particularly important because, for other
types of fingerprinting, such as JavaScript-based fingerprinting,
if a bot does not support JavaScript, then Aristaeus cannot
collect a fingerprint from that unsupported mechanism.
B. Honeysite Implementation

While Aristaeus is web-application agnostic, for this paper,
we deployed five types of popular web applications, consisting
of three Content Management Systems (CMSs) and two
website-administration tools. On the CMS front, we deployed
instances of WordPress, Joomla, and Drupal, which are
the three most popular CMSs on the web [28]. WordPress
alone is estimated to be powering more than 30% of sites
on the web [29]. In terms of website-administration tools,

0

1000

2000

3000

4000

Co
un

t

New IP addresses
New IP addresses (Trend)

Jan/24 Feb/24 Mar/24 Apr/24 May/24 Jun/24 Jul/24 Aug/24
Time

0

250000

500000

750000

1000000

Co
un

t

Daily Requests
Daily Requests (Trend)

Fig. 3: (Top) Daily number of new IP addresses that visited our
honeysites. (Bottom) Daily number of received requests.

we chose Webmin and PHPMyAdmin. Both of these tools
enable administrators to interact with databases and execute
commands on the deployed server.

Next to their popularity (which makes them an attractive
target), these tools have existed for a number of years and have
been susceptible to a large number of critical vulnerabilities,
ranging from 49 vulnerabilities (in the case of Webmin) to
333 vulnerabilities (in the case of Drupal). Note that, for
CMSs, the vulnerabilities in the core code do not include
the thousands of vulnerabilities that third-party plugins have
been vulnerable to. Moreover, all five web applications allow
users and administrators to log in, making them targets for
general-purpose, credential-stuffing bots.

C. Deployment and Log Collection/Aggregation

For the set of experiments described in this paper, we
registered a total of 100 domain names. As described in
Section III-A, we ensure that the registered domains never
existed before (i.e., once registered and left to expire) to avoid
residual-traffic pollution. For each domain, Aristaeus spawns
a honeysite and deploys one of our web application templates
onto the server. We use Let’s Encrypt to obtain valid TLS
certificates for each domain and AWS virtual machines to host
our honeysites over three different continents: North America,
Europe, and Asia. Overall, we have 42 honeysites in North
America, 39 honeysites in Europe, and 19 in Asia.

A central server is responsible for the periodic collection
and aggregation of logs from all 100 honeysites. As described
in Section III-A, these include web-server access logs, TLS
fingerprints, browser fingerprints, behavior fingerprints, and
logs that record violations of security mechanisms. We
correlate entries from different logs using timestamps and
IP addresses and store the resulting merged entries in an
Elasticsearch cluster for later analysis.

IV. BOT TRAFFIC ANALYSIS

In this and the following sections, we report on our findings
on the data collected from 100 honeysites deployed across 3
different continents (North America, Europe, and Asia-Pacific)
over a 7-month period (January 24, 2020 to August 24,
2020). Overall, our honeysites captured 26,427,667 requests
from 287,017 unique IP addresses totaling 207GB of data. A

detailed breakdown of our dataset is available in the paper’s
Appendix (Table VI).

From 26.4 million requests captured, each honeysite
received 1,235 requests each day on average, originating
from 14 IP addresses. Given that these domains have never
been registered before or linked to by any other websites,
we consider the incoming traffic to belong solely to bots and
potentially the bots’ operators.

Daily bot traffic. Figure 3 (Top), shows the number of
unique IP addresses that visited our honeysites each day. We
observe that this number initially goes down but averages
at around 1,000 IP addresses during the later stages of our
data collection. Our data demonstrate that our honeysites keep
observing traffic from new IP addresses, even 7 months after
the beginning of our experiment.

Figure 3 (Bottom) shows the number of requests received
over time. Beginning on April 18, we observed an increase in
the volume of incoming requests which is not followed by a
commensurate increase in the number of unique IP addresses.
Upon careful inspection, we attribute this increase in traffic to
campaigns of bots performing brute-force attacks on our Word-
Press honeysites (discussed in more detail in Section VI-A2).

Geographical bot distribution. Although we did not
observe significant variation across the honeysites hosted in
different regions, we did observe that bot requests are not
evenly distributed across countries. Overall, we received most
bot requests from the US, followed by China and Brazil.
Figure 4 presents the top 10 countries based on the number
of IP addresses that contacted our honeysites.

Limited coverage of IP blocklists. We collect information
about malicious IP addresses from 9 popular IP blocklists that
mainly focus on malicious clients and web threats, including
AlienVault, BadIPs, Blocklist.de, and BotScout. Out of 76,396
IPs that exhibited malicious behavior against our Aristaeus-
managed infrastructure, only 13% appeared in these blocklists.

To better understand the nature of these malicious bots and
how they relate to the rest of the bots recorded by Aristaeus,
we used the IP2Location lite IP-ASN database [30] to obtain
the type of location of all IP addresses in our dataset. Figure 5
shows this distribution. Contrary to our expectation that most
bots would be located in data centers, most IP addresses
(64.37%) are, in fact, located in residential IP space.

This finding suggests that most bot requests come from
either infected residential devices, or using residential devices
as a proxy to evade IP-based blocklists [31]. This is also
confirmed by the distribution of the IP addresses in the
third-party IP blocklists that we obtained. As shown in
Figure 5, the vast majority of the hosts labeled as malicious
by these blocklists are also located in residential networks.

US CN BR RU TW IR IN DE VN ID
Bot IP Origin

0

20000

40000

60000

IP
 C

ou
nt

55,470
30.00%

26,808
14.50%23,837

12.89%17,040
9.21%

14,402
7.79%

13,722
7.42%

11,753
6.36% 7,595

4.11%
7,165
3.87%

7,133
3.86%

Fig. 4: Bot Origin Country Distribution.

Commercial Data Center ISP (Residential) Other
IP Usage Type

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Blocklist IP
Aristaeus dataset malicious IP
Aristaeus dataset all IP

Fig. 5: Location of IP addresses.

Lastly, to understand how often the blocklists need to be
updated, we characterize the lifetime of bots in our dataset.
We define the “lifetime” as the duration between a bot’s first
visit of a honeysite and the final visit through the same IP
address. We observe 69.8% bot IP addresses have a lifetime
less than a day. These bots are active for a short period of
time and then leave, never to return. In contrast, 0.8% of bots
have a lifetime longer than 200 days, approaching the duration
of our study. This indicates that bots frequently switch to
new IP addresses, which make static IP-based blocklists less
effective against IP-churning behavior.

Our comparison of the malicious bots discovered by Aris-
taeus, with popular blocklists demonstrates both the poor cov-
erage of existing blocklists but also the power of Aristaeus that
can identify tens of thousands of malicious IP addresses that are
currently evading other tools. We provide more details on our
methodology for labeling bots as malicious in Section VI-A.

Honeysite discovery. A bot can discover domain names
using DNS zone files, certificate transparency logs, and
passive network monitoring. We observe that, mere minutes
after a honeysite is placed online, Aristaeus already starts
observing requests for resources that are clearly associated
with exploitation attempts (e.g. login.php, /phpinfo.php,
/db pma.php, and /shell.php). In Section VI-A, we provide
more details as to the types of exploitation attempts that we
observed in Aristaeus’s logs.

To identify how bots find their way onto our honeysites, we
inspect the “Host” header in the bot HTTP requests checking
whether they visit us through the domain name or by the
IP address of each honeysite. Out of the total 287,017 IP
addresses belonging to bots, we find that 126,361 (44%) visit
us through our honeysite IP addresses whereas 74,728 (26%)
visit us through the domain names. The remaining 85,928
(30%) IP addresses do not utilize a “Host” header. Moreover,
in HTTPS traffic, we observe that all of 36,266 bot IP
addresses visit us through our domain names since Aristaeus
does not use IP-based HTTPS certificates.

Given the large volume of requests that reach our honeysites,
one may wonder whether we are receiving traffic because
of domains that were once configured to resolve to our
AWS-assigned IP addresses and whose administrators forgot
to change them, when they retired their old virtual machines.
This type of “dangling domains” are a source of vulnerabilities
and have been recently investigated by Liu et al. [32] and

Borgolte et al. [33]. Using passive DNS, we discovered
that two misconfigured third-party domains pointed to our
infrastructure, during the duration of our experiment. However,
the clients who connected to our honeysites because of these
misconfigured domains amount to a mere 0.14% of the total
observed IP addresses.

Similarly, to quantify the likelihood that we are receiving
requests from real users (as opposed to bots) whose browsers
are stumbling upon content linked to via an IP address (instead
of through a domain name) back when the Aristaeus-controlled
IP addresses used to belong to other parties, we performed
the following experiment. We crawled 30 pages for each of
the Alexa top 10K websites, searching for content (i.e. images,
JavaScript files, links, and CSS) that was linked to via an
IP address. Out of the 3,127,334 discovered links, just 31
(0.0009%) were links that used a hardcoded IP address.

When considered together, these findings demonstrate that
the vast majority of Aristaeus-recorded visits are not associated
with real users, but with bots (benign and malicious) that are
the subject of our study.

Most targeted URIs. Not all honeysite endpoints receive
the same number of requests. Here, we list the endpoints that
received the most requests from bots and the web applications
to which they belong.

Among the most requested endpoints, we observe those
that are common across multiple web applications, such as
robots.txt, as well as resources that belong to only one of our
web applications, such as wp-login.php, which is the login page
of WordPress. Figure 6 shows the share of requests for each
URI towards different web applications; darker-colored cells
indicate a higher portion of requests going towards that type
of web application. To enable a baseline comparison, Figure 6
also shows the access distribution of document root (/).

Overall, the login endpoints of our honeysites received the
most attention by bots. These requests are brute forcing the
login credentials and target endpoints such as wp-login.php or
/user/login. There are also general requests for the robots.txt
file. Interestingly, the robots.txt file was mostly queried on
WordPress and Joomla honeysites and significantly less for
Drupal, PHPMyAdmin, and Webmin honeysites.

Certain resources are only requested on one of our web
platforms. For instance, xmlrpc.php and wp-login.php are
only requested on WordPress honeysites. Similarly, the URI
/changelog.txt is requested only from Drupal honeysites for the
purpose of web-application fingerprinting (i.e. determining the
exact version and whether it is vulnerable to known exploits).

Next is session login.cgi file that hosts the Webmin login
page, and we only observe requests to this resource on Webmin
instances. Finally, document root and /latest/dynamic/instance-
identity/document requests are observed equally among all of
our honeysites. The /latest/dynamic/instance-identity/document
endpoint exists on some of the servers hosted on AWS and
can be used in a Server-Side Request Forgery (SSRF) attack
(we discuss this attack in Section VI-A2).

Overall, the application-specific attack pattern suggests that
bots will fingerprint the applications and identify the presence

xmlrpc.php

wp-login.php

/wp-admin/

/administr
ator/

/robots.t
xt

insta
nce-identity

/user/lo
gin

/CHANGELOG.txt

(POST) /in
dex.php

/phpmyadmin/index.php

/sessio
n_login.cgi

/(document ro
ot)

Wordpress

Joomla

Drupal

PHPMyAdmin

Webmin

99.88 97.69 99.73 0.61 36.97 18.37 0.09 0.00 1.00 0.00 0.00 23.18

0.05 0.80 0.14 97.94 35.23 21.43 0.10 0.00 30.95 0.00 0.00 21.44

0.02 0.70 0.10 0.62 12.64 20.61 99.74 99.98 0.91 0.00 0.00 20.63

0.01 0.57 0.02 0.28 9.25 19.17 0.05 0.01 66.41 100.00 0.00 18.22

0.04 0.23 0.01 0.55 5.91 20.42 0.01 0.00 0.72 0.00 100.00 16.53

Fig. 6: Heatmap of the most requested URIs and their respective
web applications. Darker cells indicate a larger fraction of requests
towards that type of web application. The icons in each cell indicate
whether the resource is available in that web application.
indicates that the resource exists; indicates that the resource does
not exist; indicates that the resource exists but is not available
to unauthenticated clients.

of a specific vulnerable web application rather than blindly
firing their attack payloads. We discuss the fingerprinting
attempts by bots in more detail in Section VI-A2. Lastly,
Table VII (in the Appendix) lists the most targeted URLs
from the perspective of each web application type.

V. JAVASCRIPT FINGERPRINTS OF BOTS

In this section, we report on our findings regarding bot
detection through browser fingerprinting.

JavaScript support. We designed several tests to measure
the JavaScript support of bots. From these tests, we discovered
out that only 11,205 (0.63% of the total 1,760,124 sessions)
of bot sessions support JavaScript functionality such as adding
dynamic DOM elements and making AJAX requests.

JavaScript-based browser fingerprinting. When it comes
to the detection of the bots that visited our honeysites, the
effectiveness of JavaScript-based browser fingerprinting is
greatly impacted by the lack of support for JavaScript from the
majority of bots. Across the total of 1,760,124 sessions, only
0.59% of them returned a JavaScript-based browser fingerprint.

Overall, given that the majority of bots that come to our
websites do not support JavaScript, this type of browser
fingerprinting proves to be less useful for bot identification.
By the same token, this also indicates that if websites demand
JavaScript in order to be accessible to users, the vast majority
of bots identified by Aristaeus will be filtered out.

VI. BOT BEHAVIOR

In this section, we look at different aspects of the behavior
of bots during their visits on our honeysites.

Honoring the robots.txt. Based on our dynamic robots.txt
generation scheme, we did not observe any violations against
Disallow-marked paths. This is an unexpected finding and
could be because of the popularity of using fake Disallow
entries for identifying reconnaissance attempts [34]–[36].
However, this does not mean that all bots will honor robots.txt,
since only 2.2% of total sessions included a request to this file.

Enforcing the content security policy (CSP). Less than
1% of the total IP addresses reported CSP violations on
our honeysites. Similarly, less than 1% of bots violated the

CSP rules by loading resources that we explicitly disallowed.
The majority of CSP violations originated from benign
search-engine bots which were capable of loading embedded
resources (such as, third-party images and JavaScript files) but
did not support CSP. The vast majority of bots do not load
CSP-prohibited resources, not because they honor CSP, but
because they do not load these types of resources in general.

Shared/distributed crawling. Since Aristaeus encodes the
client’s IP addresses into each URL cache-breaker, clients are
expected to make requests that match their URLs. However,
out of 1,253,590 requests that bore valid cache breakers, we
found that 536,258 (42.8%) “re-used” cache-breakers given
to clients with different IP addresses.

Given the large percentage of mismatched requests, we can
conclude that most are because of distributed crawlers which
identify URLs of interest from one set of IP addresses and then
distribute the task of crawling across a different pool of “work-
ers”. This behavior is widely observed in Googlebots (19.6%
of all cache-breaker re-use) and the “MJ12Bot” operated by the
UK-based Majestic (32.1% cache-breaker reuse). Interestingly,
malicious bots do not engage in this behavior, i.e., any cache-
breakers that we receive from them match their IP address.

A. Bot Intentions

Based on their activity on our honeysites, we categorize
bot sessions into three categories: “Benign”, “Malicious”, and
“Other/Gray”. Benign bots are defined as bots visiting our
honeysites and asking for valid resources similar to a normal
browser, with no apparent intent to attack our honeysites. For
example, benign bots do not send unsolicited POST requests
nor try to exploit a vulnerability. Contrastingly, malicious
bots are those that send unsolicited POST requests towards
authentication endpoints, or send invalid requests trying to
exploit vulnerabilities. Apart from these two categories, there
are certain bots that because of limited interaction with our
honeysites, cannot be clearly labeled as benign or malicious.
We label these bots as “Other/Gray”.

1) Benign bots

Based on their activity, we categorize search-engine bots
and academic/industry scanners as benign bots. In total, we
recorded 347,386 benign requests, which is 1.3% of the total
requests received by Aristaeus.

Search-engine bots. Search-engine bots are responsible
for the majority of requests in the benign bots category, and
contribute to 84.4% of total benign bots. The general way of
identifying search-engine bots is from their User-Agents where
they explicitly introduce themselves. However, it is possible
for bots to masquerade their User-Agents as search-engine
bots in order to hide their malicious activity. Search engines
typically provide mechanisms, such as reverse DNS lookups,
that allow webmasters to verify the origin of each bot that
claims to belong to a given search engine [37]–[40].

In total, we received 317,820 requests from search-engine
bots, with Google bots contributing 80.2% of these requests.
For instance, we observed four different Google-bot-related

TABLE I: Breakdown of requests from search engine bots

Type Total SEBot Requests Verified Requests

Googlebot 233,024 210,917 (90.5%)

Bingbot 77,618 77,574 (99.9%)

Baidubot 2,284 61 (0.026%)

Yandexbot 4,894 4,785 (97.8%)

Total 317,820 293,337 (92.3%)

user agents (“Googlebot/2.1”, “Googlebot-Image/1.0”,
“AppEngine-Google”, and “Google Page Speed Insights”)
which match documentation from Google [41].

Of the 317,820 requests claiming to originate from
search-engine bots, we verified that 293,337 (92.3%) are
indeed real search-engine bot requests. The share of requests
towards our honeysites from the identified search-engine bots
are listed in Table I.

Academic and Industry scanners. Apart from anonymous
scanners, we identified 30,402 (0.12%) requests originating
from scanners belonging to companies which collect website
statistics (such as BuiltWith [28] and NetCraft [42]), keep
historical copies of websites (such as the Internet Archive [43]),
and collect SEO-related information from websites (such as
Dataprovider.com). Moreover, the crawlers belonging to a
security group from a German university were observed on our
honeysites. We were able to verify all of the aforementioned
bots via reverse DNS lookups, attributing their source IP
address back to their respective companies and institutions.

2) Malicious bots
We define malicious requests by their endpoints and access

methods. As we described in Section III-A, we ensure that
the domains we register for Aristaeus never existed in the past.
Hence, since benign bots have no memory of past versions
of our sites, there should be no reason for a benign bot to
request a non-existent resource. Therefore, we can label all
invalid requests as reconnaissance (i.e., fingerprinting and
exploitation attempts) requests, which we ultimately classify
as malicious. Similarly, we label bots that make unsolicited
POST requests to other endpoints, such as login pages, as
malicious. Overall, we labeled 15,064,878 requests (57% of
total requests) as malicious.

Credential brute force attempts. 13,445,474 (50.8%)
requests from 47,667 IP addresses targeted the login page of
our websites. By analyzing all unsolicited POST requests we
received and checking their corresponding URIs, we discovered
that different web applications attract different attacks. For
example, there are 12,370,063 POST requests towards Word-
Press, 90.3% of which are attempts to brute force wp-login.php
and xmlrpc.php. However, for Joomla, there are 343,263
unsolicited POST requests with only 51.6% targeting the
Joomla log-in page. The remaining requests are not specific to
Joomla and are targeting a wide variety of vulnerable software
(e.g. requests towards /cgi-bin/mainfunction.cgi attack DrayTek
devices that are vulnerable to remote code execution [44]).

Interestingly, system management tools attract different
patterns of attacks. While 76.2% of POST requests towards

TABLE II: Top fingerprinting requests

Path # requests Unique IPs Target applications

/CHANGELOG.txt 116,513 97 Drupal, Joomla,
Moodle and spip

/(thinkphp|TP)/
(public|index) 55,144 3,608 ThinkPHP

/wp-content/plugins 32,917 2,416 WordPress

/solr/ 23,307 919 Apache Solr

/manager/html 10,615 1,557 Tomcat Manager

phpMyAdmin targeted login endpoints, virtually all POST
requests (99.95%) for Webmin targeted its specific login
endpoints. This suggests that most bots targeting Webmin
focus on brute-forcing credentials, as opposed to targeting
other, publicly-accessible pages.

By examining the username and password combinations
that were attempted against our honeysites, we observe that
attackers always try to login as “admin” using either common
passwords [45], or variations of our honeysite domains (i.e.
attempting a “www.example.com” password on the honeysite
serving the example.com domain). From the number of
attempts, we found 99.6% of bots (as identified by their IP
address) issued fewer than 10 attempts per domain before chang-
ing their targets. Only 0.3% of bots issued more than 100 brute-
force attempts per domain. The most active bot issued 64,211
login-related requests towards our WordPress honeysites.

Reconnaissance attempts. To identify requests related
to reconnaissance, we incorporate a two-prong mapping
approach. First, we generate signatures based on popular
libraries and databases that include URIs related to Application
fingerprinting, Exploitation attempts, Scanning for open-access
backdoors, and Scanning for unprotected backup files. We
provide details for each specific library and dataset later in
this section. Second, we manually identify the intention of
requests for endpoints that received more than 1,000 requests
in our dataset, mapping each request to the aforementioned
categories of attacks whenever possible. This filtering step is
necessary since we cannot possibly create a comprehensive
database that includes signatures for all bot requests. As an
example of the power of this prioritized-labeling method,
via this process we discovered attacks exploiting the recent
CVE-2020-0618 vulnerability in MSSQL Reporting Servers
which was not part of our original database of signatures.

Overall, we collected a total of 16,044 signatures, with 179
signatures matching requests in our dataset. These signatures
cover 25,502 (9% of total) IP addresses which generated
659,672 requests.

• Application fingerprinting: In this study, fingerprinting
attempts refer to requests that aim to uncover the presence of
specific web-application versions and their plugins. To quantify
these requests, we use the signatures from BlindElephant [46]
and WhatWeb [47], two open-source fingerprinting tools that
have large databases of fingerprints for popular web applications
and their plugins. By requesting specific files and matching
their content with the signatures in their database, these tools
can identify the type and specific version of the target web

application. We extract the file paths from the databases of
fingerprints and correlate these signatures with our web server
logs, to identify fingerprinting attempts from malicious bots. To
ensure that we do not label regular crawling as fingerprinting,
we discount requests towards generic files, such as, index.php
and robots.txt even if these are valuable in the context of web-
application fingerprinting. Overall, our database includes 13,887
URL-based signatures used to identify fingerprinting attempts.

Table II lists the top 5 paths in our database of fingerprinting
signatures that received the most requests. In total, we received
223,913 requests that were categorized as fingerprinting at-
tempts and originated from 12,183 unique bot IP addresses.
Within our database of signatures, /CHANGELOG.txt has
received the largest number of requests since this file can be
used to identify the version of Drupal, Joomla, Moodle (Online
learning platform), and SPIP (Collaborative publishing system).
Second, we observe requests towards remote-code execution
(RCE) vulnerabilities in ThinkPHP deployments which are
known to be targeted by multiple botnets [48]. The fingerprint-
ing of Apache Solr is related to the versions that were reported
to be vulnerable to RCE in November 2019 [49]. Finally, in the
top five categories of fingerprinting requests, we observe large
numbers of requests towards specific vulnerable WordPress plu-
gins as well as the default deployment of Tomcat Manager. The
rest of fingerprinting-related requests follow the same patterns
of probing for highly-specific endpoints, belonging to applica-
tions that are either misconfigured or known to be vulnerable.
• Exploitation attempts: We define exploitation attempts

as requests towards URIs that are directly used to trigger known
exploits. We use exploits from exploit-db.com to generate
signatures for exploitation attempts. Unfortunately, automati-
cally generating signatures based on public exploit descriptions
is challenging due to the diverse format of vulnerability reports.
As a result, we incorporate a human-assisted automation tool
that extracts the URLs of signature candidates for the human
analyst to verify. At the same time, we hypothesize that bots
will most likely focus on server-side exploits that are easy
to mount (such as SQL injections and RCEs) and therefore
focus on these types of exploits, as opposed to including client-
side attacks, such as, XSS and CSRF. The resulting signature
database includes 593 signatures for the 5 web applications
in our dataset corresponding to vulnerabilities from 2014 to
2020. Our database includes 174 exploits for WordPress, 297
exploits for Joomla, 40 for Drupal, 52 for phpMyAdmin, and
19 exploits for Webmin, as well as 14 exploits extracted by
looking at the most requested paths on our honeysites.

Overall, we matched 238,837 incoming requests to
exploitation attempts that originated from 10,358 bot IP
addresses. Table III includes the top 5 endpoints used in
these attempts. In this table, we report on the CVE number
whenever possible, and in the absence of a CVE number, we
report the EDB-ID (Exploit-db ID) for these vulnerabilities.

The RCE vulnerability in PHPUnit received the most
exploitation attempts, followed by a setup PHP code injection
vulnerability of phpMyAdmin, and an RCE on exposed XDebug
servers (PHP Remote debugging tool). Next, an RCE vulner-

TABLE III: Top exploit requests

Path # requests Unique IPs CVE/EDB-ID

/vendor/phpunit/
.../eval-stdin.php 70,875 346 CVE-2017-9841

/scripts/setup.php 67,417 1,567 CVE-2009-1151

/?XDEBUG SESSION
START=phpstorm 23,447 7 EDB-44568

/?a=fetch&content=<php>die(
@md5(HelloThinkCMF))</php> 21,819 953 CVE-2019-7580

/cgi-bin/mainfunction.cgi 20,105 2,055 CVE-2020-8515

ability in ThinkCMF (CMS application based on thinkPHP)
is also targeted by malicious bots. The last entry in Table III
refers to a Draytech vulnerability which is significant in that its
exploit was released during our study, allowing us to observe
how fast it was weaponized (discussed more in Section VIII).

Interestingly, 3,221 (14%) of IP addresses that sent
fingerprinting or exploitation requests were observed in both
categories, suggesting that some bots cover a wide range of
vulnerabilities, as opposed to focusing on a single exploit.

Next to exploitation attempts, we also searched for requests
that included tell-tale shell commands (such as rm -rf /tmp
and wget) in one or more request parameters. In this way, we
discovered an additional 24,379 shell-related requests.

Though most injected shell commands attempt to
download a malicious payload from a publicly accessible IP
address/domain, we discovered that 2,890 requests contain
the URL of a private IP address, such as “192.168.1.1:8088”
which of course is unreachable from our web servers. These
requests could either belong to a buggy bot that extracts the IP
address of the wrong network interface after exploiting a host,
or could indicate botnets which are meant to attack the routers
in a local network, but finally ended up on the public web.

• Scanning for open-access backdoors: We generate
a list of 485 well-known PHP, ASP, Perl, Java and bash,
backdoors. We use the same lists as Starov et al. [50] to extract
the signatures of known web backdoors and augment their
lists with two repositories that host web shells [51], [52]. Our
signatures matched 42 web shells (such as, shell.php, cmd.php
and up.php) requested 144,082 times by 6,721 bot IP addresses.
• Scanning for unprotected sensitive files: Another

group of bots query for unprotected sensitive files, by either
guessing the names of likely-sensitive files (such as backup.sql)
or capitalizing on administrator behavior (e.g. keeping known
working copies of sensitive files with a .old suffix) and leaks
due to specific editors (such as accessing the temporary swap
files left behind by Vim).

Similar to web-shell signatures, we used popular word lists
used in security scanners, such as SecLists [51], to build a
database of 1,016 signatures. These signatures matched 52,840
requests from 5,846 unique bot IP addresses. Files with the
.env extension which include potentially sensitive environment
variables used in Docker as well as other popular development
platforms were requested 29,713 times by 1,877 unique bot IP
addresses. Bots also requested a wide range of likely sensitive
file extensions including .old, .sql, .backup, .zip, and .bak as
well as text editor cache files such as .php˜ and .swp files.

Based on all of our signatures introduced in this section,
we observe 929 unique bot IP addresses that participated in
all of the aforementioned types of attacks. This demonstrates
that there exist bots that are equipped with a large number
of exploits and are willing to exhaust them while attacking
a host, before proceeding to their next victim.

B. Duration and frequency of bot visits

We grouped the requests recorded by Aristaeus into
1,760,124 sessions. Overall, 44.9% of sessions only consist
of a single request. 46% of sessions include between 2-20
requests, whereas there exist 2,310 sessions that include more
than 1,000 requests. The majority of bots spend as little as 1-3
seconds on our honeysites. 58.1% of the bots that visited our
honeysites left within 3 seconds, and among these bots, 89.5%
left within 1 second. Contrastingly, 10.7% of bots spent more
than 30 minutes on our honeysites.

A large fraction of bots visiting our honeysites perform too
few and too generic requests for us to be able to categorize
them as benign or malicious. Specifically, 11,015,403 requests
(41.68% of total requests) fall into this category. We provide
additional details for these bots below:

Single-shot scanners. 50.04% of the IP addresses that
visited our honeysites only sent a single request and did
not exhibit any obviously malicious behavior. This is clearly
bot behavior since modern browsers make tens of follow-up
requests in order to load the required first-party and third-party
resources. Similarly, these bots are unlikely to be indexing
websites since that would also require follow-up requests
for pages linked from the main page. We hypothesize that
these single-shot bots are either populating databases for later
processing (by more persistent bots) or are searching for
specific content that is not present on our setup.

Internet-wide scanners. We attributed 114,489 requests to
four different Internet-wide scanners, including Masscan [53]
(21.4%) and Zgrab [54] (73.1%). Moreover, our honeysites
recorded “Stretchoid” (34.3%) and “NetSystemsResearch”
(3.69%) bots, which claim to identify online assets of organiza-
tions and the availability of public systems. The exact intention
behind these requests remains unclear since these tools can be
collecting data for both benign as well as malicious purposes.

C. Unexpected changes in bot identity

In this section, we focus on bots that switched their identity
across requests. We look for changes in certain HTTP headers,
such as, the user agent, as well as artifacts of a change in the
used automation tool, such as, the reordering of HTTP headers.

Multiple User-Agents from the same IP address. At least
14.28% of all IP addresses that visited our honeysites sent
requests with two or more user agents. There may be benign
reasons why a bot would present two or more User-Agent
(UA) strings, such as, bots behind NATs and proxies, or bots
that upgraded their versions of browsers/crawling tools. At
the same time, we observed clear spoofing behavior, such as,
bots changing their UAs with every request. We summarize
the types of UA changes below:

1) Changing the operating system. As shown in the
following example, only the operating system part of the
user agent was changed across two requests.
• ”Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:52.0)

Gecko/ 20100101 Firefox/52.0”
• ”Mozilla/5.0 (Windows NT 6.1; WOW64; rv:52.0)

Gecko/ 20100101 Firefox/52.0”
We identified 5,479 IP addresses that claimed more than
one OS during their requests. One possible explanation
is that these bots are searching for server-side cloaking,
i.e., our honeysites presenting different content to users
of Windows vs. Linux.

2) Changing the browser version. We use the Levenshtein
distance to measure User-Agent string similarity of a
certain IP address, recording their minimum and maximum
similarity. We observed that when the changes are limited
to browser versions as presented in the bots’ UAs, the
requests exhibit more than 90% similarity. A total of
11,500 IP addresses present these types of version changes.
In light, however, of our findings in Section VII-A3
regarding bots imitating common browsers, these version
changes are likely to be part of a spoofing strategy, as
opposed to honest announcements of browser updates.

3) Switching user agents frequently We observed 4,440
(1.54%) IP addresses that sent requests with more than
5 UAs, and there are 542 IP addresses presenting more
than 20 UAs across their requests. In extreme cases, we
observed 44 IP addresses that sent more than 50 unique UA
headers. However, by looking at other HTTP headers and
their TLS fingerprint, we can attribute their requests to just
one or two tools. This uncovers the strategy of frequently
rotating UAs, presumably to evade server-side blocking.

Ordering of HTTP headers. During our analysis of
crawling tools, we observed that specific orders of headers
can be attributed to usage of certain tools. For instance, we
discovered that wget and curl have consistent orderings across
versions and are different from each other. By capitalizing on
this observation, we identified 23,727 bots that presented more
than one header orderings, revealing the usage of more than
one tools, regardless of UA claims. Moreover, we discovered
28,627 IP addresses that have only one ordering of HTTP
headers, but have multiple UAs, which means they are changing
their claimed identities, without changing the underlying tools.

VII. TLS FINGERPRINTING

Aristaeus serves content to both HTTP and HTTPS requests
to accommodate as many bots as possible. Overall, bots made
10,156,305 requests over HTTPS (38.4% of total requests).
Out of all HTTPS requests, we extracted 558 unique TLS fin-
gerprints. This indicates that most bots use the same underlying
TLS library which is related to the tool and the operating system
that they are using. We can therefore use these TLS fingerprints
to identify bots and corroborate their claimed identities.
A. TLS Fingerprint of Web Bots
1) Bots behind NAT/Proxy

It is expected that some bots will use proxies before
connecting to a website, both in order to evade rate-limiting

and blocklisting as well as to potentially distribute the load
across multiple servers. Therefore, some requests that originate
from the same IP address may be emitted by different bots. To
understand whether multiple bots are “hiding” behind the same
IP address or whether a single bot is just sending requests
with multiple UAs, we can compare the TLS fingerprints
across requests of interest. To perform this analysis, we make
use of the following observations:
• Basic Web crawling tools. Tools like curl and wget will
produce only one fingerprint for a given OS and TLS library
combination. We use this information to identify the use of
these tools in the presence of UA spoofing.
• Support for GREASE values in the TLS stack. Chrome,
Chromium, and Chromium-based browsers (such as Brave and
Opera) support GREASE, a new, TLS-handshake-related, IETF
standard [55]. The GREASE values that are sent in the TLS
handshakes produce multiple TLS fingerprints across multiple
requests, with differences in TLS cipher suites, extensions, and
E-curves. As a result, the TLS fingerprint of the aforementioned
browsers will be different in the first and the last 1-2 bytes for
all GREASE-related handshake values. GREASE was added
to Chrome in Version 55 [56] which we verified by testing
Chrome on several popular platforms (Ubuntu 16.04, Ubuntu
18.04, CentOS 7, Windows 10, Mac OS, and Android 8).

Contrastingly, browsers such as Firefox, Edge, and Safari
have not implemented GREASE at the time of our analysis.
As a result, GREASE values are absent from the handshakes
and therefore the TLS fingerprints of these browsers remain
the same across requests. For these browsers, we collected
their fingerprints over different operating systems and used
these fingerprints to uncover the true identity of bot requests.

Out of 43,985 IP addresses with a TLS fingerprint, there are
1,396 (3.17%) IPs with two or more sets of TLS fingerprints.
For this 3.17%, we observe that the requests originated from
different tools and/or OSs, hiding behind the same IP address.
If there was a TLS intercepting proxy in place, we would
not observe multiple TLS fingerprints but rather a single
TLS fingerprint (that of the intercepting proxy). Nevertheless,
distinguishing multiple clients behind a TLS proxy remains
a challenge for TLS fingerprinting.
2) TLS fingerprint of Tools

Given that only 558 unique TLS fingerprints are shared
among all 10,156,305 requests, this means that the majority
of requests can be attributed to a small number of tools and
TLS libraries.

To perform the matching of bot TLS fingerprints to known
tools, we manually extracted the TLS fingerprint of the Go-
http-client, wget, curl, Chrome, Firefox, Opera, Edge and IE
browsers, and included them in our database of signatures.
Moreover, for other TLS fingerprints that we could not repro-
duce in our setup, we assume that a crawler will not pretend to
be another crawler. For example, a crawler built using Python
may pretend to be Chrome or Firefox (in order to bypass anti-
bot mechanisms), but it has no reason to pretend to be curl given
that both tools are well known for building bots and therefore
receive the same treatment from anti-bot tools and services [8].

TABLE IV: Popular TLS fingerprint distribution. Entries below the
line correspond to Chromium-based tools that were not in the top
ten, in terms of unique bot IP count.

Tools Unique
FPs IP Count Total

Requests

Go-http-client 28 15,862 8,708,876
Libwww-perl or wget 17 6,102 120,423
PycURL/curl 26 3,942 80,374
Python-urllib 3 8 2,858 22,885
NetcraftSurveyAgent 2 2,381 14,464
msnbot/bingbot 4 1,995 44,437
Chrome-1(Googlebot) 1 1,836 28,082
Python-requests 2.x 11 1,063 754,711
commix/v2.9-stable 3 1,029 5,738
Java/1.8.0 8 308 1,710
MJ12Bot 2 289 28,065

Chrome-2(Chrome, Opera) 1 490 66,631
Chrome-3(Headless Chrome) 1 80 2,829
Chrome-4(coc coc browser) 1 4 101

Total 113 38,239 9,879,326

Therefore, after excluding browser TLS fingerprints, we used
the description from the majority of recorded UA headers that
match the unknown TLS fingerprints, to label them.

Table IV lists the most popular tools covering 113 unique
fingerprints. Given that one of these tools is based on Google
Chrome, the bottom part of Table IV lists any additional
fingerprints that we could trace back to Chrome. The total of
these 14 tools produced 9,879,326 requests, covering 97.2%
of all TLS requests. Bots using the Go language (and therefore
the Go-provided TLS libraries) are by far the most popular,
exceeding more traditional choices such as, Python, perl, and
wget. We observe a total of four different Chromium-related
fingerprints, with distinct fingerprints for bots operated
by Google (Googlebot, Google-Image, and Google Page
Speed Insights), headless Chrome, and the coc coc browser
corresponding to a Vietnamese version of Chrome.

These results show the power of TLS fingerprinting in cor-
roborating the identity of benign bots and identifying malicious
bots that are lying about their identities. Out of 38,312 requests
that claimed to be msnbot/bingbot and have a valid TLS finger-
print, we were able to use reverse DNS to verify that all of them
were indeed real msnbot or bingbots. Similarily, out of 28,011
requests that claimed to be Googlebot, we matched 27,833
(99.4%) of them through TLS fingerprinting and identify them
as real Googlebots. The remaining bots also failed in producing
the expected reverse DNS results, pointing to malicious actors
who claim the Googlebot identity to avoid getting blocked.
3) Using TLS fingerprinting to uncover the real identity of bots

Given our ability to match claimed user agents (UAs) with
presented TLS fingerprints, we checked the TLS fingerprints
of all HTTPS-capable bots searching for a mismatch between
the stated UAs and the observed TLS fingerprints. Overall, we
discovered that 27,860 (86.2%) of the total of 30,233 clients
that claim to be Firefox of Chrome, were in fact lying about
their identity.

Fake Chrome. Among the 12,148 IP addresses that claimed
to be Chrome through their UAs, 10,041 of them do not contain
the expected GREASE values in their cipher suites. As a result,

we can conclude that more than 82.6% of clients are lying about
being Chrome. From their TLS fingerprints, we can conclude
that they are mostly curl and wget running on Linux OSs.

Fake Firefox. Similarly, 18,085 IP addresses claimed
through their UAs, to be Firefox. However, 12,418 (68.7%)
of these Firefox clients actually matched the fingerprints of
Go-http-client, and 3,821 (21.1%) matched the fingerprints of
libwww-perl. A small number of requests (5.7%) matched to
either python or curl. The remaining 539 IP addresses do not
match any of the TLS fingerprints in our database, including
the fingerprints of Firefox. Overall, our results show that at
least 17,819 out of 18,085 (98.5%) IP addresses that claimed
to be Firefox are lying about their identity.

Real Chrome. 351 of the 2,419 IP addresses that show signs
of GREASE support in their TLS handshakes, claimed to be-
long to mobile Safari. This is not possible, given that Safari does
not currently support GREASE (neither for Mac nor for the
iPhone). This indicates actors (benign or malicious) who wish
to obtain the content that websites would serve to mobile Safari
browsers, but lack the ability to instrument real Apple devices.

Other TLS fingerprints. Finally, there are 11,693 of bots
that have other types of TLS fingerprints, but they mostly be-
long to Go-http-client, Python-urllib, curl, and wget, as shown
in Table IV. They exhibit a wide range of UAs including MSIE,
Android Browser, .NET CLR, and MS Word. This indicates
a much larger landscape of spoofed client identities, past the
Chrome/Firefox spoofing that we investigated in this section.

4) TLS fingerprints in Exploitation attempts
We applied our method of matching TLS fingerprints to

the stated identities of the bots behind the malicious requests
we previously discussed in Section VI-A2. Table V presents
the results. First, we can observe that there are almost no
real browsers accessing those resources, corroborating our
exploitation labels (under the reasonable assumption that
attackers do not need full-fledged browsers to send malicious
payloads to vulnerable websites). Second, there are major
variations in the different type of malicious requests. For
example, 93.4% of exploit requests are using Golang, but only
171 requests are using Golang to look for misplaced Backup
files. Similarly, libwww/wget is popular in the backdoor
requests, but these tools do not appear in backup file probing
requests. These results indicate different generations of tools
and attackers, using different underlying technologies to
exploit different website vulnerabilities.

VIII. CASE STUDIES

Bots only focusing on JS resources. Even though many
bots do not request images and other resources (presumably
as a way of speeding up their crawls) we observed bots that
only request JavaScript resources. One bot in our dataset
(IP address: 101.4.60.1**) was particularly interesting, as
it only downloaded JavaScript files but never, according to
Aristaeus’ tests, executed them. Given that the IP address of
this bot belongs to a Chinese antivirus company, we suspect
that the intention of that bot is to collect JavaScript files for
anti-malware research purposes.

TABLE V: TLS fingerprint of malicious requests

Type Python Golang libwww /
wget

Chrome /
Firefox Unknown Total

Backdoor 231 1,718 349 3 482 2,783

Backup File 411 171 84 0 1,803 2,469

Exploits 275 18,283 607 0 390 19,555

Fingerprinting 1,524 3,670 630 139 7,226 13,189

Spikes in incoming traffic. We observe two major spikes
in our dataset. The first traffic surge happened from May
28th to June 17th, where a group of bots continuously sent
us log-in attempts and XML-RPC requests. These bots
initially requested /wp-includes/wlwmanifest.xml) to check if a
honeysite was an instance of WordPress. They then extracted
the list of users from the author-list page, and then started
brute-forcing the admin account through POST requests
towards xmlrpc.php (targeting WordPress’s authentication
point that is meant to be used as an API). This group of
bots issued a total of 4,851,989 requests, amounting to
18.4% of the total requests. Similarly, the second traffic surge
corresponds to 21.9% of the total requests in our dataset.

Failed cloaking attempts. Modifying the HTTP user agent
header is likely the most common method of cloaking used
by the bots (both malicious bots trying to exploit websites
as well as benign bots operated by researchers and security
companies). Yet during our study, we observed failed attempts
to modify this header. For instance, we observed wrong
spellings of the “User-Agent” header including “useragent”
and “userAgent”. Similarly, the “Host” header also included
different spellings and letter cases, such as “HOST”, “host”,
or “hoSt”. The appearance of these spelling artifacts means
that these header fields are forged. For certain HTTP libraries
however, an incorrect spelling results in both the original
header and the new header being sent out. Therefore, some
requests recorded by Aristaeus included both ”User-Agent” and
”userAgent” headers. For these bots, the original ”User-Agent”
header indicated, e.g., ”python-requests/2.23.0”, whereas the
“userAgent” header reported ”Mozilla/5.0 (Windows NT 6.1;
WOW64; rv:45.0) Gecko/20100101 Firefox/45.0”.

Time to weaponize public exploits. During the seven-
month span of this study, we observed requests that tried to
exploit five remote command execution (RCE) vulnerabilities
that went public after the start of our data collection. As
a result, we have visibility over the initial probes for these
exploits. The five RCE vulnerabilities affect the following
software/firmware: DrayTech modems (CVE-2020-8585),
Netgear GPON router (EDB-48225), MSSQL Reporting
Servers (CVE-2020-0618), Liferay Portal (CVE-2020-7961),
and F5 Traffic Management UI (CVE-2020-5902).

For the first vulnerability on DrayTech devices, the exploit
was released on March 29, 2020 and we observed exploitation
attempts on Aristaeus’ honeysites a mere two days later.

In a similar fashion, the exploit for Netgear devices went
public on March 18 2020, and the first exploitation attempts
were recorded by Aristaeus on the same day. Next, the proof-
of-concept exploit for MSSQL reporting server vulnerability
went public by the researcher who reported this vulnerability

on February 14, 2020, and we received exploitation attempts
for this vulnerability 4 days later [57]. The Liferay vulnerability
went public on March 20, 2020 and exploiting requests showed
up in Aristaeus’ logs after 4 days. Finally, the F5 vulnerability
was publicly announced on June 30, 2020 and we observed
requests towards F5 TMUI shell on the same day.

Based on these five occasions, we can clearly observe
that the time window between an exploit going public and
malicious actors probing for that vulnerability is short and, in
certain cases (such as the Netgear and F5 devices) non-existent.

IX. DISCUSSION

In this section, we first highlight the key takeaways from
our analysis of the data that Aristaeus collected, and then
explore how the size of our infrastructure relates to the
number of bots discovered. We close by discussing Aristaeus’s
limitations as well as future work directions.
A. Key Takeaways
• Everyone is a target: Just by being online and publicly ac-
cessible, each one of Aristaeus’ honeysites attracted an average
of 37,753 requests per month, 21,523 (57%) of which were
clearly malicious. Each online site is exposed to fingerprinting
and a wide range of attacks, abusing both operator error (such
as, common passwords) as well as recently-released exploits.
• Most generic bot requests are generated by rudimentary
HTTP libraries: Throughout our data analysis, we observed
that 99.3% of the bots that visit our websites do not
support JavaScript. This renders the state-of-the-art browser
fingerprinting that is based on advanced browser APIs and
JavaScript, ineffective. To combat this, we demonstrated
that TLS fingerprinting can be used to accurately fingerprint
browsing environments based on common HTTP libraries.
• Most bots are located in residential IP space: Through
our experiments, we observed that the majority (64.37%) of
bot IP addresses were residential ones, while only 30.36%
of IP addresses were located in data centers. This indicates
that bots use infected or otherwise proxied residential devices
to scan the Internet. We expect that requests from residential
IP space are less susceptible to rate limiting and blocklisting
compared to requests from data centers and public clouds, out
of fear of blocking residential users.
• Generic bots target low-hanging fruit: Aristaeus’ logs
reveal that 89.5% of sessions include less than 20 requests,
and less than 0.13% of sessions include over 1,000 requests.
The bruteforce attempts exhibit similar patterns: 99.6% IP
addresses issue fewer than 10 attempts per domain, while only
0.3% IP addresses issued more than 100 attempts per domain.
This indicates that most bots are highly selective and surgical
in their attacks, going after easy-to-exploit targets.
• IP blocklists are incomplete: The vast majority (87%)
of the malicious bot IPs from our honeysite logs were not
listed in popular IP blocklists. This further emphasizes the
limited benefits of static IP blocklisting and therefore the
need for reactive defenses against bots. At the same time, the
poor blocklist coverage showcases the practical benefits of
Aristaeus, which can discover tens of thousands of malicious
clients that are currently missing from popular blocklists.

• Exploits that go public are quickly abused: We observed
that bots start probing for vulnerable targets as quickly as on
the same day that an exploit was made public. Our findings
highlight the importance of immediately updating Internet-
facing software, as any delay, however small, can be capitalized
by automated bots to compromise systems and services.
• Fake search-engine bots are not as common as one
would expect: Contrary to our expectations, less than 0.3%
of the total requests that claimed to be a search-engine
bot were lying about their identity. This could suggest that
either search-engine bots do not receive special treatments
by websites, or that provided mechanisms for verifying the
source IP address of search-engine bots have been successful
in deterring bot authors from pretending to be search engines.
• Most generic internet bots use the same underlying
HTTP libraries: Even though Aristaeus recorded more than
10.2 million HTTPS requests from bots, these bots generated
just 558 unique TLS fingerprints. We were able to trace these
fingerprints back to 14 popular tools and HTTP libraries,
responsible for more than 97.2% of the total requests.
B. Size of Infrastructure

To understand how the number of Aristaeus-managed hon-
eysites affects the collected intelligence (e.g. could Aristaeus
record just as many attackers with 50 instead of 100 honeysites),
we conduct the following simulation. We pick an ordering of
honeysites at random and calculate the number of unique IP
addresses and TLS fingerprints, each honeysite contributes.
Figure 7 shows the results when this simulation is repeated
100 times. We resort to simulation (instead of just ordering the
honeysites by contributing intelligence) since a new real de-
ployment would not have access to post-deployment statistics.

We observe two clearly different distributions. While one
could obtain approximately 50% of the TLS fingerprints with
just 10% of the honeysites, the number of unique IP addresses
grows linearly with the number of honeysites. Our findings indi-
cate that, if the objective is the curation of TLS fingeprints from
bots, a smaller infrastructure can suffice yet, if the objective is
the collection of bot IP addresses, one could deploy an even
larger number of honeysites and still obtain new observations.
C. Limitations and Future Work

In this study, we deployed honeysites based on five popular
web applications. Since we discovered that many bots first
fingerprint their targets before sending exploits (Section VI-A),
our honeysites will not always capture exploit attempts towards
unsupported web applications.

By design, Aristaeus in general and honeysites in particular,
attract traffic from generic bots that target every website on the
Internet. Yet high-profile websites as well as specific companies,
often receive targeted bot attacks that are tailored to their infras-
tructure. These bots and their attacks will likely not be captured
by Aristaeus, unless attackers first tried them on the public web.

As follow-up work, we plan to design honeysites that can dy-
namically react to bots, deceiving them into believing that they
are interacting with the web application that they are looking
for. Malware analysis systems already make use of variations of

Fig. 7: (Top) Number of honeysites and their coverage of bot TLS
fingerprints. The opaque line is the median of 100 random experiments.
(Bottom) Number of honeysites and their coverage of bot IP addresses.

this technique to, e.g., detect malicious browser extensions [58]
and malicious websites that attempt to compromise vulnerable
browser plugins [59]. In this way, we expect that our honeysites
will be able to capture more attacks (particularly from the
single-shot scanners that currently do not send any traffic past
an initial probing request) and exploit payloads.

X. RELATED WORK

Characterization and detection of crawlers. To quantify
crawler behavior and differences of crawler strategies, a number
of researchers analyzed large corpora of web server logs and
reported on their findings. These studies include the analysis
of 24 hours worth of crawler traffic on microsoft.com [60], 12
weeks of traffic from the website belonging to the Standard
Performance Evaluation Corporation (SPEC) [61], 12.5 years
of network traffic logs collected at the Lawrence Berkeley
National Laboratory [62], as well as crawler traffic on
academic networks [63] and publication libraries [64].

The security aspect of web crawlers has received significantly
less attention compared to studies of generic crawling activity.
Most existing attempts to differentiate crawlers from real users
use differences in their navigational patterns, such as, the
percentage of HTTP methods in requests (GET/POST/HEAD
etc.), the types of links requested, and the timing between
individual requests [4]–[6]. These features are then used in one
or more supervised machine-learning algorithms trained using
ground truth that the authors of each paper were able to procure,
typically by manually labeling traffic of one or more webservers
to which they had access. Xie et al. propose an offline method
for identifying malicious crawlers by searching for clusters of
requests towards non-existent resources [65]. Park et al. [22]
investigated the possibility of detecting malicious web crawlers
by looking for mouse movement, the loading of Cascading
Style Sheets (CSS), and the following of invisible links. Jan
et al. [66] propose an ML-based bot detection scheme trained

on limited labeled bot traffic from an industry partner. By
using data augmentation methods, they are able to synthesize
samples and expand their dataset used to train ML models.

In our paper, we sidestep the issue of having to manually
label traffic as belonging to malicious crawlers, through the
use of honeysites, i.e., websites which are never advertised
and therefore any visitors must, by definition, either be
benign/malicious crawlers or their operators who follow-up on
a discovery from one of their bots. We therefore argue that the
access logs that we collected via our network of honeysites
can be used as ground truth in order to train more accurate
ML-based, bot detection systems.
Network telescopes and honeypots. Network telescopes and
honeypots are two classes of systems developed to study
Internet scanning activity at scale. First introduced by Moore et
al. [67], Network Telescopes observe and measure the remote
network security events by using a customized router to reroute
invalid IP address blocks traffic to a collection server. These
works are effective in capturing network security events such
as DDoS attacks, Internet scanners, or worm infections. Recent
work by Richter et al. [68], applies the same principles to
89,000 CDN servers spread across 172 Class A prefixes and find
that 32% all logged scan traffic are the result of localized scans.
While large in scale, network telescopes either do not provide
any response or interactive actions, or support basic responses
at the network level (e.g., sending back SYN-ACK if received
a SYN from certain ports [69]). This makes them incapable of
analyzing crawler interaction with servers and web applications.

Honeypots provide decoy computing resources for the
purpose of monitoring and logging the activities of entities
that probe them. High-interaction honeypots can respond to
probes with high fidelity, but are hard to set up and maintain.
In contrast, low-interaction honeypots such as Honeyd [70]
and SGNET [71] intercept traffic sent to nonexistent hosts
and use simulated systems with various “personalities” to
form responses. This allows low-interaction honeypots to be
somewhat extensible while limiting their ability to respond
to the probes [72].

Our system, Aristaeus, combines some of the best properties
of both these worlds. Aristaeus is extensible and can be
automatically deployed on globally-dispersed servers. However,
unlike network telescopes and low-interactive honeypots, our
system does not restrict itself to the network layer responses
but instead utilizes real web applications that have been
augmented to perform traditional as well as novel types of
client fingerprinting. In these aspects, our work most closely
relates to the honeynet system by Canali and Balzarotti which
utilized 500 honeypot websites with known vulnerabilities
(such as SQL injections and Remote Command Execution
bugs), and studied the exploitation and post-exploitation
behavior of attackers [12]. While our systems share similarities
(such as the use of real web applications instead of mock web
applications or low-interaction webserver honeypots), our focus
is on characterizing the requests that we receive, clustering
them into crawling campaigns, and uncovering the real identity
of crawlers. In contrast, because of their setup, Canali and

Balzarotti [12] are able to characterize how exactly attackers
attempt to exploit known vulnerabilities, what types of files
they upload to the compromised servers, and how attackers
abuse the compromised servers for phishing and spamming (all
of which are well outside Aristaeus’s goals and capabilities).

XI. CONCLUSION

In this paper, we presented the design and implementation of
Aristaeus, a system for deploying and managing large numbers
of web applications which are deployed on previously-unused
domain names, for the sole purpose of attracting web bots.
Using Aristaeus, we conducted a seven-month-long, large-scale
study of crawling activity recorded at 100 globally distributed
honeysites. These honeysites captured more than 200 GB of
crawling activity, on websites that have zero organic traffic.

By analyzing this data, we discovered not only the expected
bots operated by search engines, but an active and diverse
ecosystem of malicious bots that constantly probed our
infrastructure for operator errors (such as poor credentials
and sensitive files) as well as vulnerable versions of online
software. Among others, we discovered that an average
Aristaeus-managed honeysite received more than 37K requests
per month from bots, 50% of which were malicious. Out of
the 76,000 IP addresses operated by clearly malicious bots
recorded by Aristaeus, 87% of them are currently missing from
popular IP-based blocklists. We observed that malicious bots
engage in brute-force attacks, web application fingerprinting,
and can rapidly add new exploits to their abusive capabilities,
even on the same day as an exploit becoming public. Finally,
through novel header-based, TLS-based, and JavaScript-based
fingerprinting techniques, we uncovered the true identity of
bots finding that most bots that claim to be a popular browser
are in fact lying and are instead implemented on simple HTTP
libraries built using Python and Go.

Next to all the insights into the abuse by malicious bots,
Aristaeus allowed us to curate a dataset that is virtually
free of organic user traffic which we will make available
to researchers upon publication of this paper. This bot-only
dataset can be used to better understand the dynamics of bots
and design more accurate bot-detection algorithms.

XII. AVAILABILITY

One of the main contributions of this paper is the curation
of a bot-only, traffic dataset. To facilitate and advance research
on the topic of bot detection, our dataset will be available to
other researchers upon request.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback. This
work was supported by the Office of Naval Research under
grant N00014-20-1-2720, N00014-20-1-2858, by the National
Science Foundation under grants CNS-1813974, CNS-1941617,
and CMMI-1842020, as well as by a 2018 Amazon Research
award. Any opinions, findings, or conclusions expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsors.

REFERENCES
[1] A. Shirokova, “Cms brute force attacks are still a threat.” [Online].

Available: https://blogs.cisco.com/security/cms-brute-force-attacks-are-
still-a-threat

[2] T. Canavan, CMS Security Handbook: The Comprehensive Guide for
WordPress, Joomla, Drupal, and Plone. John Wiley and Sons, 2011.

[3] Imperva, “Bad bot report 2020: Bad bots strike back.” [Online].
Available: https://www.imperva.com/resources/resource-library/reports/
2020-bad-bot-report/

[4] A. G. Lourenço and O. O. Belo, “Catching web crawlers in the act,”
in Proceedings of the 6th international Conference on Web Engineering,
2006, pp. 265–272.

[5] P.-N. Tan and V. Kumar, “Discovery of web robot sessions based on
their navigational patterns,” in Intelligent Technologies for Information
Analysis. Springer, 2004, pp. 193–222.

[6] G. Jacob, E. Kirda, C. Kruegel, and G. Vigna, “Pubcrawl: Protecting
users and businesses from crawlers,” in Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 507–522.

[7] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc, “FP-Crawlers:
Studying the Resilience of Browser Fingerprinting to Block Crawlers,”
in MADWeb’20 - NDSS Workshop on Measurements, Attacks, and
Defenses for the Web.

[8] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis,
“Web Runner 2049: Evaluating Third-Party Anti-bot Services,”
in 17th Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02612454

[9] K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-resource
defeat of recaptcha’s audio challenge,” in 11th USENIX Workshop on
Offensive Technologies (WOOT 17), 2017.

[10] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and
S. Savage, “Re: Captchas-understanding captcha-solving services in an
economic context.” in USENIX Security Symposium, vol. 10, 2010, p. 3.

[11] S. Sivakorn, J. Polakis, and A. D. Keromytis, “I’m not a human:
Breaking the google recaptcha,” Black Hat, 2016.

[12] D. Canali and D. Balzarotti, “Behind the Scenes of Online Attacks: an
Analysis of Exploitation Behaviors on the Web,” in Proceedidngs of the
20th Network & Distributed System Security Symposium (NDSS), 2013.

[13] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Antonakakis,
“Domain-z: 28 registrations later measuring the exploitation of residual
trust in domains,” in IEEE Symposium on Security and Privacy (SP),
2016, pp. 691–706.

[14] “Seleniumhq browser automation,” https://www.selenium.dev/.
[15] P. Eckersley, “How unique is your web browser?” in International Sym-

posium on Privacy Enhancing Technologies Symposium, 2010, pp. 1–18.
[16] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in 2013 IEEE Symposium on Security and
Privacy, 2013, pp. 541–555.

[17] O. Starov and N. Nikiforakis, “Xhound: Quantifying the fingerprintability
of browser extensions,” in IEEE Symposium on Security and Privacy
(SP), 2017, pp. 941–956.

[18] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in IEEE Symposium on Security and Privacy (SP), 2016, pp. 878–894.

[19] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser,
E. Weippl, and F. Wien, “Fast and reliable browser identification with
javascript engine fingerprinting,” in Web 2.0 Workshop on Security and
Privacy (W2SP), vol. 5, 2013.

[20] L. Brotherston, “Tls fingerprinting.” [Online]. Available:
https://github.com/LeeBrotherston/tls-fingerprinting

[21] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson, “The security impact of
https interception.” in Proceedings of the 24th Network and Distributed
System Security Symposium (NDSS), 2017.

[22] K. Park, V. S. Pai, K.-W. Lee, and S. B. Calo, “Securing web service
by automatic robot detection.” in USENIX Annual Technical Conference,
General Track, 2006, pp. 255–260.

[23] G. Analytics, “How a web session is defined in analytics.” [Online].
Available: https://support.google.com/analytics/answer/2731565?hl=en

[24] Valve, “Fingerprintjs2.” [Online]. Available: https:
//github.com/Valve/fingerprintjs2

[25] M. W. Docs, “Content security policy (csp).” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

[26] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with content
security policy,” in Proceedings of the 19th international conference
on World wide web, 2010, pp. 921–930.

[27] N. Virvilis, B. Vanautgaerden, and O. S. Serrano, “Changing the game:
The art of deceiving sophisticated attackers,” in 2014 6th International
Conference On Cyber Conflict (CyCon 2014). IEEE, 2014, pp. 87–97.

[28] B. P. Ltd, “Web technology usage trends (accessed march 27,2020).”
[Online]. Available: https://trends.builtwith.com

[29] “Wordpress: About us,” https://wordpress.com/about/.
[30] “Ip2location lite ip-asn database,” https://lite.ip2location.com/database/

ip-asn.
[31] X. Mi, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li, S. Alrwais,

L. Sun, and Y. Liu, “Resident evil: Understanding residential ip proxy
as a dark service,” in 2019 IEEE Symposium on Security and Privacy
(SP), 2019.

[32] D. Liu, S. Hao, and H. Wang, “All your dns records point to us:
Understanding the security threats of dangling dns records,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1414–1425.

[33] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna, “Cloud strife:
mitigating the security risks of domain-validated certificates,” 2018.

[34] S. F. McKenna, “Detection and classification of web robots with
honeypots,” Naval Postgraduate School Monterey United States, Tech.
Rep., 2016.

[35] R. Barnett, “Setting HoneyTraps with ModSecurity: Adding Fake
robots.txt Disallow Entries,” https://www.trustwave.com/en-us/resources/
blogs/spiderlabs-blog/setting-honeytraps-with-modsecurity-adding-
fake-robotstxt-disallow-entries/.

[36] R. Haswell, “Stopping bad robots with honeytraps,” https:
//www.davidnaylor.co.uk/stopping-bad-robots-with-honeytraps.html.

[37] Google, “Verifying googlebot.” [Online]. Available:
https://support.google.com/webmasters/answer/80553

[38] Microsoft, “Verifying bingbot.” [Online]. Available:
https://www.bing.com/toolbox/verify-bingbot

[39] Yandex, “Verifying yandexbot.” [Online]. Available: https://yandex.com/
support/webmaster/robot-workings/check-yandex-robots.html

[40] Baidu, “How can i know the crawling is from baiduspider.” [Online].
Available: https://help.baidu.com/question?prod id=99&class=0&id=
3001

[41] Google, “Overview of google crawlers.” [Online]. Available:
https://support.google.com/webmasters/answer/1061943

[42] Netcraft, “Netcraft: Active cyber defence,” URL:
https://www.netcraft.com/, 2014.

[43] “Internet Archive: Digital Library of Free & Borrowable Books, Movies,
Music & Wayback Machine,” https://archive.org/.

[44] C. Security, “Multiple vulnerabilities in draytek products
could allow for arbitrary code execution.” [Online]. Available:
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-draytek-
products-could-allow-for-arbitrary-code-execution 2020-043/

[45] M. Daniel, H. Jason, and g0tmi1k, “10k most common credentials.”
[Online]. Available: https://github.com/danielmiessler/SecLists/blob/
master/Passwords/Common-Credentials/10k-most-common.txt

[46] “The blindelephant web application fingerprinter.” [Online]. Available:
https://github.com/lokifer/BlindElephant

[47] “Whatweb.” [Online]. Available: https://github.com/urbanadventurer/
WhatWeb

[48] “Thinkphp remote code execution vulnerability
used to deploy malware.” [Online]. Available:
https://www.tenable.com/blog/thinkphp-remote-code-execution-
vulnerability-used-to-deploy-variety-of-malware-cve-2018-20062

[49] “Exploit code published for two dangerous apache
solr remote code execution flaws.” [Online]. Available:
https://www.zdnet.com/article/exploit-code-published-for-two-
dangerous-apache-solr-remote-code-execution-flaws/

[50] O. Starov, J. Dahse, S. S. Ahmad, T. Holz, and N. Nikiforakis, “No
honor among thieves: A large-scale analysis of malicious web shells,”
in Proceedings of the 25th International Conference on World Wide
Web, ser. WWW ’16, 2016, p. 1021–1032.

[51] “Seclists: A collection of multiple types of lists
used during security assessments.” [Online]. Available:
https://github.com/danielmiessler/SecLists

[52] “lhlsec/webshell.” [Online]. Available: https://github.com/lhlsec/webshell
[53] R. D. Graham, “Masscan: Mass ip port scanner,” URL: https://github.

com/robertdavidgraham/masscan, 2014.

[54] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast
internet-wide scanning and its security applications,” in Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13),
2013, pp. 605–620.

[55] D. B. Internet Engineering Task Force (IETF), “Applying generate
random extensions and sustain extensibility (grease) to tls extensibility.”
[Online]. Available: https://tools.ietf.org/html/rfc8701

[56] “Chrome platform status: Grease for tls,” https://www.chromestatus.com/
feature/6475903378915328.

[57] “Cve-2020-0618: Rce in sql server reporting services (ssrs).” [Online].
Available: https://www.mdsec.co.uk/2020/02/cve-2020-0618-rce-in-sql-
server-reporting-services-ssrs/

[58] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson,
“Hulk: Eliciting malicious behavior in browser extensions,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp. 641–654.

[59] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-
download attacks and malicious javascript code,” in Proceedings of the
19th international conference on World wide web, 2010, pp. 281–290.

[60] J. Lee, S. Cha, D. Lee, and H. Lee, “Classification of web robots:
An empirical study based on over one billion requests,” computers &
security, vol. 28, no. 8, pp. 795–802, 2009.

[61] M. C. Calzarossa, L. Massari, and D. Tessera, “An extensive study of web
robots traffic,” in Proceedings of International Conference on Information
Integration and Web-based Applications & Services, 2013, p. 410.

[62] M. Allman, V. Paxson, and J. Terrell, “A brief history of scanning,”
in Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, 2007, pp. 77–82.

[63] M. D. Dikaiakos, A. Stassopoulou, and L. Papageorgiou, “An
investigation of web crawler behavior: characterization and metrics,”
Computer Communications, vol. 28, no. 8, pp. 880–897, 2005.

[64] P. Huntington, D. Nicholas, and H. R. Jamali, “Website usage metrics: A
re-assessment of session data,” Information Processing & Management,
vol. 44, no. 1, pp. 358–372, 2008.

[65] G. Xie, H. Hang, and M. Faloutsos, “Scanner hunter: Understanding
http scanning traffic,” in Proceedings of the 9th ACM symposium on
Information, computer and communications security, 2014, pp. 27–38.

[66] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,
“Throwing darts in the dark? detecting bots with limited data using
neural data augmentation,” The 41st IEEE Symposium on Security and
Privacy (IEEE SP), Jan 2020.

[67] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Network telescopes:
Technical report,” Cooperative Association for Internet Data Analysis
(CAIDA), Tech. Rep., 2004.

[68] P. Richter and A. Berger, “Scanning the scanners: Sensing the internet
from a massively distributed network telescope,” in Proceedings of the
Internet Measurement Conference, 2019, pp. 144–157.

[69] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The internet
motion sensor-a distributed blackhole monitoring system.” in NDSS, 2005.

[70] N. Provos, “A virtual honeypot framework.” in USENIX Security
Symposium, vol. 173, 2004, pp. 1–14.

[71] C. Leita and M. Dacier, “Sgnet: a worldwide deployable framework
to support the analysis of malware threat models,” in 2008 Seventh
European Dependable Computing Conference. IEEE, 2008, pp. 99–109.

[72] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection
signatures using honeypots,” ACM SIGCOMM computer communication
review, vol. 34, no. 1, pp. 51–56, 2004.

XIII. APPENDIX

TABLE VI: Aristaeus dataset description

Dataset Requests %Requests Unique
IP Addresses

Blocklist
Coverage Shared Crawling Begin Date End Date

Benign 347,386 1.3% 6,802 6.91% Yes

2020-01-24
00:00:01

2020-08-24
23:59:59

Malicious 15,064,878 57% 76,396 13% No

Unknown / Gray 11,015,403 41.68% 206,111 11.64% No

Total 26.4 million 100% 287K 11.61% (Mixed)

TABLE VII: Top requested URL in different web applications

Rank WordPress Joomla Drupal PHPMyAdmin Webmin

1 /xmlrpc.php
(62.664%)

/administrator-
/index.php
(48.333%)

/user/login?destination=
/node/1#comment-form

(81.143%)

(POST)/index.php
(75.65%)

/session login.cgi
(79.93%)

2 /wp-login.php
(25.094%)

/administrator/
(41.512%)

/wp-login.php
(18.064%)

(POST)/phpmyadmin/index.php
(9.658%)

/wp-login.php
(13.649%)

3 /wp-admin/
(12.239%)

/wp-login.php
(9.29%)

/xmlrpc.php
(0.476%)

(GET)/phpmyadmin
/index.php
(5.715%)

/xmlrpc.php
(4.51%)

4
/administrator

/index.php
(0.001%)

/xmlrpc.php
(0.822%)

/administrator/
(0.222%)

/wp-login.php
(8.228%)

/robots.txt
(1.684%)

5 /administrator
(0.001%)

/wp-admin/
(0.044%)

/administrator/index.php
(0.095%)

/vendor/phpunit/phpunit-
/src/Util/PHP/eval-stdin.php

(0.749%)

/wp-admin/
(0.227%)

