
Zero-One Attack: Degrading Closed-Loop Neural
Network Control Systems using State-Time

Perturbations
Stanley Bak

Stony Brook University
Stony Brook, NY, USA

stanley.bak@stonybrook.edu

Sergiy Bogomolov
Newcastle University

Newcastle upon Tyne, England
bogom.s@gmail.com

Abdelrahman Hekal
Newcastle University

Newcastle upon Tyne, England
b6062805@ncl.ac.uk

Veena Krish
Stony Brook University
Stony Brook, NY, USA

kveena@cs.stonybrook.edu

Andrew Mata
Stony Brook University
Stony Brook, NY, USA

andrew.mata@stonybrook.edu

Amir Rahmati
Stony Brook University
Stony Brook, NY, USA
amir@cs.stonybrook.edu

Abstract—Autonomous cyber-physical systems with deep-
learning components have shown great promise but have so far
enjoyed limited adoption. Part of the problem is that, beyond
average-case analysis, guaranteeing robustness and reasoning
about worst-case behaviors in these systems is difficult. Previous
research has developed attacks that can degrade a system’s per-
formance using small perturbations on observed states, as well
as ways to retrain the networks that appear to make them robust
to such attacks. In this work, we advance the state of the art by
developing a new method called the Zero-One Attack, which is
able to bypass the current strongest defense.

The Zero-One Attack minimizes reward by combining an
outer loop zeroth-order gradient-free optimization with an inner
loop, first-order gradient-based method. This setup both reduces
the dimensionality of the zeroth-order optimization problem
and leverages efficient gradient-based search methods for neural
networks, such as projected gradient descent. In addition to
state observation noise, we consider a new attack model with
bounded perturbations to the execution time instant of the control
policy, as real-time schedulers usually guarantee execution once
per period, which may not be strictly periodic. On the Mujoco
Half Cheetah system with the best current defense, the Zero-
One Attack degrades the performance 195% beyond the state-
of-the-art, which increases to 522% more degradation when also
attacking timing jitter.

Index Terms—CPS, deep-learning, sensor noise, optimization

I. INTRODUCTION

Adding deep-learning components to cyber-physical sys-
tems (CPS) has been attracting attention throughout many
industry sectors because of the ability of such systems to effec-
tively model and optimize agent-environment interactions [1].
Machine Learning (ML) techniques such as Reinforcement
Learning (RL) [2] have proven to be powerful tools for con-
structing effective neural network controllers in complex envi-
ronments. However, such techniques are data-driven, and real-
world CPS are often safety-critical.

Neural networks for visual classification systems have been
shown to be vulnerable to human-eye-imperceptible adversar-

ial perturbations [3], [4]. This has raised questions about the
potential for similar vulnerabilities in control systems gov-
erned by neural network policies. Recent work has demon-
strated such vulnerabilities, extending adversarial attacks to
deep-learning policies [5]–[7] where bounded observation
noise can significantly degrade performance.

In this work, we propose a new attack that we call the Zero-
One Attack, which casts performance degradation as an opti-
mization problem. Our attack combines an outer loop zeroth-
order gradient-free optimization with an inner loop, first-order
gradient-based method. The outer loop optimizes over the
system’s actions, which effectively reduces the dimensionality
of the zeroth-order optimization problem as the action space is
usually lower dimension than the state space. The inner loop
then uses efficient first-order optimization methods for neural
networks, such as projected gradient descent, in order to find
state perturbations that achieve the desired actions.

Time plays a critical role in cyber-physical systems. In
classical control, the choice of a discrete controller’s frequency
can be theoretically justified based on the properties of the sys-
tem’s transfer function and the Nyquist sampling theorem [8].
However, reinforcement learning is based on Markov decision
processes where time is abstracted away during training, im-
plicitly assuming a constant period between controller execu-
tion times. Running the system using a real-time scheduler
can introduce timing jitter, and it is unclear how much this
can affect an RL controller’s performance. While training with
stochastic delays generally improves real-world performance
[9], [10], this problem has not yet been studied from a worst-
case robustness perspective. We propose a new threat model
that considers allowing modifications to the controller’s execu-
tion time instant within each control period, while still subject
to the periodic deadline guarantees under the standard Liu and
Layland scheduling [11]. We adapt the Zero-One Attack to
this threat model and generate effective timing perturbation at-

Plant P (s , a , ΔT +i i

∗ γ)i

Policy π(s +i δ)i

Time

Jitter

si+1

s +i δi

a
i

∗

γi

si

State

Observation

Noise

2

Fig. 1: The state-time threat model in this work considers bounded observation
noise δi and constrained time jitter γi, at each control cycle i.

tacks. Using a combined threat model where both observation
noise and time jitter are considered, results in further degraded
performance. Figure 1 outlines the combined threat model.

We compare our attack with the state-of-the-art Zhang
attack on nominal and adversarially-trained (defended) net-
works [12]. We evaluate Zero-One Attack using the same
systems and networks from the prior work, a set of continuous-
control RL benchmarks from the OpenAI Gym [13], as well
as the SafeRL Dubins aircraft rejoin task [14] released by the
Air Force Research Lab (AFRL).

The main contributions of this paper are as follows:
• We present the Zero-One Attack for attacking neural net-

work control systems using observation perturbations. Our
method is stronger than current state-of-the-art attacks even
on hardened networks where no previous attacks caused
significant degradation.

• We propose a new time jitter threat model. We adapt our
method to generate attacks using time and/or state-time per-
turbations.

• We successfully generate attacks on five complex RL sys-
tems, with up to 27 state variables and 8 input actions. Our
attack reduces the system’s reward several times more than
the state-of-the-art, under identical perturbation bounds.

II. BACKGROUND

This work analyzes closed-loop control systems that use
neural network controllers that can be learned via reinforce-
ment learning. We provide some context about these concepts
before describing our methodology. We additionally provide
some context about observation perturbation techniques that
typically fall within the field of Adversarial Machine Learning.

A. Neural Network Control System (NNCS)

Our work concerns closed-loop control systems, typically
modeled as a Markov Decision Process (MDP) and governed
by a controller acting in relation to a plant. At each time
step i of the MDP, the controller determines and executes an
action based on the state, and the dynamics of the environment
determine the received reward and next state. We consider con-
trol networks with real-valued, multidimensional input (state)
and output (control) spaces. In this work, we consider system
trajectories that result from multiple executions of the NNCS
and resulting plant dynamics within the environment. Within
this context, we refer to just the sequence of states as the
trajectory. Formal terminology is detailed in section III-2.

B. Reinforcement Learning

Complex NNCS policies are often learned through rein-
forcement learning(RL) frameworks. Control theory and RL
share common concepts of a system state, an agent operating
in an environment, and a policy that determines the actions
of the agent. RL approaches learning optimal actions leverage
the notion of a Reward R, a judgment of how well the agent
has performed in the environment. Figure 1 (excluding the red
diamonds) provides an illustration of the control policy and
plant response in a closed-loop manner. RL algorithms seek
to determine a policy that maximizes this reward. We analyze
the robustness of trained policies; the development of more
robust RL training algorithms is out of scope for this work.
While not a requirement of our approach, we mainly consider
policies trained via Proximal Policy Optimization, PPO, [15]
which is considered among the state-of-the-art and has shown
success across a variety of RL problems.

C. Gradient-based Adversarial Machine Learning Attacks

We leverage techniques from a vast field of work that
focuses on adversarial example generation for deep neural
networks. These attacks generate a slightly-altered version of
a given input that would cause a target network to return
an unexpected output. Adversarial evasion attacks were first
shown on deep networks for image classification [3], [16].
Early techniques typically took advantage of the gradient of
the network, which is used to indicate how slight changes of
an input example could cause large changes in the expected
output. Since the introduction of these techniques, further
work has shown that adversarial examples can transfer across
networks (alleviating the need to access the target network’s
weights) [17], be crafted in real time [18], and can pose a
threat to systems operating in the physical world [19], [20]. For
our purposes, we seek to leverage a powerful attack assumes
access to network gradients, which we refer to as a function
GB, as we are interested in evaluating network robustness.

III. PRELIMINARIES

1) Threat Model

We investigate the performance of an RL-learned agent un-
der the influence of an adversary that can perturb the observed
state or the actuation time of the system. We look for small
deviations to the observed state or actuation time that can
result in significant performance decay. In Figure 1, normal
closed-loop behavior involves alternating execution between
a Plant that advances the state of the system and a trained
Policy that determines the agent’s actions within the environ-
ment. We represent the adversary’s influence within the State
Observation Noise and Time Jitter scopes in red diamonds.

The State Observation Noise scope represents cases where
the state observations si are altered before being processed
by the policy. Rather than operating on the true state of the
environment, the policy returns actions based of an adversarial
state, s∗i . In this case, the adversary does not have direct con-
trol over the environment; rather, control over the observation
of the environment perceived by the agent. For example, a

compromised physical sensor would relay incorrect informa-
tion about the true environment to the agent, without requiring
an alteration of the physical environment.

The Time Jitter scope represents cases where the adversary
influences the actuation time of the system’s controls. We as-
sume that the the learned policy executes near-instantaneously,
compared with the actuation period of the system. Rather than
waiting to apply the action at the next prescribed periodic
time, the system might execute the control behavior at some
deviation in time. Various real-world factors can affect execu-
sion time, such as computational resources (denial-of-service
attacks), power management, and system load. However, we
keep the constraint that exactly one action must have been
actuated within each actuation time period.

For both spheres of influence, we assume that the adversary
has white-box access to the weights of the trained neural
network controller, which represents the strongest threat model
in this context.

2) Notation

This work analyses the behavior of control systems over a
total simulation time T . We refer to the state of the agent in the
environment at a given time step i ∈ [1, 2, ..T] as si ∈ S where
S ⊆ Rn. The control behavior of the agent is represented by
actions ai ∈ A where A ⊆ Rm. The agent’s policy π : Rn →
Rm executes a neural network to determine a control action
given a perceived state: ai = π(si). While it is sometimes
the convention to differentiate between the full state of the
environment and the observed subset of that state that is fed
to the policy (the ”observation”), for simplicity of notation,
we refer to the observed network input also as the ”state”.
We only investigate perturbations to the portion of the state
received by the agent’s policy; other state variables critical to
steps of the environment are unchanged.

Given state and action pair (si, ai) and actuation time period
∆T , the next state of the environment is defined using the plant
dynamics P by the following: si+1 = P (si, ai,∆T). This
closed-loop behavior is shown in black in Figure 1 (ignoring
the injected perturbations in red).

We additionally introduce the notions of adversarial per-
turbations and jitter that influence states of the system over
time. At a given time step i, a current state si, and a noise
bound ϵ, an adversarial observation perturbation vector δi is
defined as δi ≤ ϵ itemwise. The next state of the system
is determined by the action decided by the policy π on the
perturbed observations, along with the plant dynamics over a
given actuation period. The controller is presented with si+δi,
but the ground-truth environment state is unaffected. The next
state is calculated by: si+1 = P (si, π(si + δi),∆T).

Adversarial jitter γi is a perturbation to ∆T at time step
i, within half the nominal sampling period: γi ∈ [−∆T

2 , ∆T
2].

The combined threat of both adversarial states and time-based
jitter is represented as: si+1 = P (si, π(si + δi),∆T + γi).

In the following sections, we denote any altered parameter
with a star: ∗. In particular, we refer to the adversarial state

s∗i = si+ δi, an adversarial action a∗i = π(s∗i) and adversarial
jitter ∆T ∗

i = ∆T + γi.

IV. METHODOLOGY

We formulate the problem of finding the minimum-reward
trajectory with maximum noise perturbation ϵ as a constrained
optimization on the state variables. Using gradient methods,
the search space can be transformed from the state onto the
action space, which generally has a smaller dimensionality. We
describe these two optimization steps of our overall approach
in subsection IV-A. In the following subsection, we add the
adversarial jitter as another optimization parameter to create a
general adversarial attack method.

A. Zero-One Attack Approach

1) State Optimization

The task of finding noise perturbations to maximally de-
grade the performance of an agent over a full trace can be
expressed as the following constrained optimization problem:

argmin
δ1..δN

N∑
i=0

R(si, ai) (1)

subject to si+1 = P (si, ai,∆T)

ai = π(si + δi)

δi < ϵ

where over a trajectory defined by state values over time
steps i: si=1...si=T , P represents the state transitions gov-
erned by environment dynamics, π the agent’s policy, R the
reward function, ϵ the attack budget, δi the adversarial state
perturbation at time step i and s0 the initial state. We seek to
find a series of state perturbations that minimize the reward
achieved by the agent over the simulation length.

While the objective function can be expressed using the
environment and network controller, it is highly complex.
The environment can be considered a black-box function
with highly non-linear dynamics, while the neural network
controller contains non-linear operations from the activation
layers. This makes set-based analysis infeasible for higher-
dimension environments and large networks.

An initial naive approach is to optimize the state parameters
on the constrained state space around the observation. How-
ever, this becomes an infeasible problem when considering
dimensionality. For example, the HalfCheetah benchmark has
a n = 17 dimension state space and N = 1000 step time hori-
zon, which yields an overall 17,000-dimensional optimization
problem that is unrealistically large to effectively search over
with current tools.

Dimensionality can be further reduced by splitting the total
time horizon into smaller pieces to analyze separately. While
this approach loses the possibility of finding the optimal so-
lution and adds a partition hyper-parameter τ , we reduce the
original optimization into several smaller optimization prob-
lems, which become more feasible to analyze. We then solve
the optimization problem 2 for each partition sequentially. The

choice of τ is important as the trade-off can have immediate
and long-term reduced performance depending on the size of
the parameter.

Continuing our dimensionality example, the HalfCheetah
environment has a |A| = 6 dimension action space, and a
cursory hyper-parameter search reveals τ = 20 as a suitable
partition parameter. The optimization problem is now parti-
tioned into 50 smaller optimization problems of dimensionality
|A|∗ τ = 120.

The choice of optimizer is important: the cost function
is expensive because network gradient attacks are generated
for each state in the environment loop. As a result, limiting
the number of samples is advantageous. Additionally, deriva-
tives can be ill-defined at certain samples for the cost func-
tion because of possible discontinuities caused by the non-
determinism of the gradient attack as well as the constraints
on the magnitude of the attack.

We choose Zeroth order optimization as it is well-suited to
our problem: the complexity of our objective in Equation 2
makes it difficult to estimate gradients or devise a surrogate
objective.

2) Action Optimization

Systems with large state dimensionality and searches over
large time partitions τ still pose a challenge for the above
optimization. This challenge is familiar to global optimization
solvers, which typically require fine-tuned exploration and
exploitation parameters. Figure 6 illustrates the limitations of
optimization over the state space, performing worse than the
state-of-art attack.

We circumvent this problem with a technique to transform
the parameters of the optimization problem from the state to
the action variables. The action spaces of RL environments
typically have smaller dimensionality than the state space. This
is a fair assumption for real-world cyber-physical systems, as
the sensors in an autonomous system will likely significantly
outnumber the actuators.

We leverage existing methods for computing adversarial ex-
amples on neural networks to perform the space-action trans-
formation. These attack methods estimate a small perturbation
applied to a given input that would maximize a given adver-
sarial objective. These attacks also apply to neural network-
based policies: given a policy network π, input state si and
adversarial action a∗i , an evasion attack will find an adversarial
state s∗i in a region close to si that satisfies a∗i = π(s∗i).

In our application, s∗i must be within the noise threshold
ϵ defined for the environment. We define this neighborhood
region B(si, ϵ) := {| si− s∗i |∞<= ϵ,∀s∗i ∈ B}. We note that
a∗i might not be reachable for any s∗i ∈ B(si, ϵ). Thus, we
make a relaxation that the gradient-based attack attempts to
find the adversarial action ã∗i where | a∗i−ã∗i |<=| a∗i−a′i | for
any reachable action a′i obtained by the policy from samples
within B(si, ϵ). Intuitively, we are searching for a perturbation
of the given state that would yield an action closest to the
target adversarial action.

ai
∗

Plant

s ←i+1 P(s , a , ΔT +i i
∗ γ)i

s , ai i
First-Order Optimizer

δ ←i GB(s , a)i i

Zeroth-Order Optimizer
R(s)∑

i=0
n

i

a , .., a1 n

γ , .., γ1 n

Policy

a ←i
∗ π(s +i δ)i

δi

4

s =init s , T =1 n

Inner-Loop Cost Function

n times

Fig. 2: Zero-One Attack in the combined threat model.

Constrained gradient attack methods have been an active
research area in the field of adversarial machine learning, and
several techniques exist. Our chosen implementation is de-
tailed in Appendix B. Finding adversarial perturbations require
solving a complex optimization problem where current tech-
niques aren’t guaranteed to find the optimal solution. However,
they can extract gradient information so they effectively search
over the state space within local neighborhoods.

The optimization problem with a new search space is framed
below where τ represents the time partition parameter (num-
ber of timesteps to consider within a window), and GB is a
Gradient-Based attack technique for finding adversarial states.
We look for an adversarial state that minimizes the sum of re-
wards over all potential adversarial actions. This optimization
is performed iteratively over every consecutive time horizon
of length τ from n = 0, 1, .., N

τ .

argmin
a∗
1 ..a

∗
τ

(n+1)∗τ∑
i=n∗τ

R(si, a
∗
i) (2)

subject to si+1 = P (si, a
∗
i ,∆T)

a∗i = π(si + δi)

δi = GB(si, ai)

ai ∈ A

Algorithm 1 outlines the inner-loop cost function for a tra-
jectory and outer-loop optimization procedure.

B. Zero-One Attack Extension to Actuation Time

The way we framed the optimization problem for observa-
tion attacks also allows us to identify other adversarial param-
eters that would influence the agent’s trajectory. We focus on
control actuation time, which has been explored with stochas-
tic strategies but not from an explicitly adversarial perspective.

We similarly look to find a sequence of actuation periods
that minimizes the total rewards achieved by the agent. The
outer optimization can expressed by the following:

Reward

7322

4593

1737

−630

5Fig. 3: Average reward achieved over simulations for one evaluated environment, Mujoco HalfCheetah, resulting from manipulations to actuation time. Each
horizontal axis represents time. We show the starts/ends of each potential actuation period (black arrows) and the actual actuation times resulting from an
4 attack methods. For Clean Simulations, the true actuation time is constant periodic: the control is executed at the middle of each actuation period. For a
Random attack, the control behavior is executed at a random position within each period. The Alternating Actuation attack represents an intuitive worst-case:
the control behavior executes at the earliest or last available time in consecutive periods, leading to the largest gaps. Lastly, our attack, Zero-One Attack
strategically identifies the worst-case actuation time per cycle to specifically degrade performance. The final average reward achieved for the Half Cheetah
simulations are displayed to the right. Our Attack causes significantly more degradation than the intuitive Alternating worst-case, which is stronger than
Random attacks. Full evaluations are discussed in Section V-D and Table II.

argmin
γ∗
1 ..γ

∗
T

(n+1)∗τ∑
i=n∗τ

R(si, ai) (3)

subject to ai+1 = π(si+1)

si+1 = P (si, ai,∆T + γ∗
i)

− ∆T

2
≤ γ∗

i ≤
∆T

2

where ∆T is the actuation time period and γ∗
i is the adver-

sarial jitter.
Figure 3 illustrates how perturbed actuation times can sig-

nificantly impact the performance of an RL system. The ar-
rows indicate the beginning and end of each actuation time
window ∆T , while the marker represents the actual time an
action is performed. We assume that the policy executes near-
instantaneously, and that the control behavior can be executed
at any point within a ∆T time frame. We impose a requirement
that exactly one marker must exist in each time window. Four
different actuation time patterns are illustrated: clean, random,
alternating, and our method, Zero-One Attack. The clean time
pattern executes at a constant time period and represents the
expected behavior of the system. The Random pattern illus-
trates performance of the system in response to random fluc-
tuations in actuation time, which has received most attention
in related literature. The alternating pattern was chosen as
an intuitive worst-case attack strategy that would yield the
largest degradation, as it results in the largest possible gaps
between consecutive actuations. The last row illustrates our
adversarial attack: the precise actuation times are strategically
computed for each period to degrade performance. We display
total reward achieved by one of our evaluations for these time

patterns to the right to indicate how we measure the success
of the attack.

V. EVALUATION

The current state-of-the-art sensor noise attack generation
is by Zhang et al. [12], which we denote as Zhang’s attack.
This attack trains a neural network model that outputs the
adversarial noise to add at each trajectory state, significantly
outperforming all other attack generations before it. In our
evaluation, we compare Zero-One Attack to theirs under the
same conditions. We encourage readers to refer to their work
for a comprehensive comparison between Zhang’s attack and
attack methods before it.

Additionally, we compare Zero-One Attack against their
nominal PPO network controllers as well as adversarially-
trained (ATLA) controllers on which no current adversarial
attack generator tool has been successful in significantly de-
grading performance. In particular, we demonstrate our attack
performance on the following policies for each environment:
(1) Nominal PPO, (2) Defended PPO using ATLA adversar-
ial training, and (3) Defended PPO using an ATLA-retrained
network with an LSTM (Long Short-Term Memory) com-
ponent and State-Adversarial regularization from their earlier
work [21]. The ATLA-LSTM + SA Regularization is their
most robust model.

A. Environments

We evaluate our approach on an array of continuous-control
tasks. We selected four standard Mucojo environments from
the Open AI Gym [13] to directly compare our method
with Zhang et al.. We additionally include an example of a
continuous-control aerospace task from the SafeRL suite of
benchmarks to illustrate our method’s performance within a
safety-critical typical control system setting. We use the 2D

Algorithm 1 Zero-One Attack
1: Initialize: sinit ← sstart
2: for each time partition window do
3: ▷ Solve for each time window sequentially using 0th

order optimization
4: {a∗1, ..., a∗T } ← argminA ZERO-ORDERCOST(sinit)
5: send ← SIM-ENV(sinit, a

∗
1, ..., a

∗
T)

6: sinit ← send
7: end for
8:
9: function SIM-ENV(s1, a1, .., an, P , π)

10: for 1..n do
11: ai ← π(si)
12: si+1, Ri+1 ← P (si, ai,∆T)
13: end for
14: return sn
15: end function
16:
17: function ZERO-ORDERCOST(a1, ..., aT | si=1, P, π, ϵ)
18: ▷ Inner optimization on selected actions ai, initial state

in time partition, si=1, state dynamics P , policy π, and
noise bound ϵ using 1st order technique

19: Initialize: GB attack on π with constraint ϵ
20: for t = 1...τ do
21: δi ← GB(si, ai)
22: a∗i ← π(si + δi) ▷ Adversarial action
23: si+1, Ri+1 ← P (si, a

∗
i ,∆T)

24: end for
25: return

∑T
i=1 Ri ▷ Total reward for attacked trajectory

26: end function

version of the Dubins Rejoin task from the SafeRL suite,
representing two aircrafts in a coplanar flight. The wingman
aircraft is considered the agent, and the trainable policy should
guide the wingman into formation flight around the lead dur-
ing the simulation without colliding. Illustrations of these five
environments are shown in Table IV in Appendix A, along
with their descriptions.

B. Optimization Tools

We used the ZOOpt library for the outer optimization and
Projected Gradient Descent for the inner optimization for all
evaluations. Details of these techniques are provided in Ap-
pendix B.

C. Observation Noise Evaluation

We evaluate our attack method on four continuous RL con-
trol tasks from the OpenAI Gym [13] that use the Mujoco
engine [22] for physical dynamics.

These results are presented in Table I. Additionally, we re-
port the clean reward for each network as a reference. There is
an unusual decrease in performance between the Nominal and
Defended (ATLA) model performance under Zhang’s attack,
which is unintuitive. We believe that this is a side effect of
the inconsistent nature of the attack due to the use of function

Fig. 4: State of HalfCheetah agent in clean and attacked simulations. We
observed that the clean policy leads the agent to run steadily forwards (right),
past the end of the stage. The policy attacked using Zhang’a attack causes the
cheetah to slowly inch backwards. In contrast, the policy attacked using Zero-
One Attack leads the cheetah to run backwards, beyond the start of the stage.

approximators.
Our method outperforms Zhang’s attack in every benchmark
and network except for the PPO model for the Hopper envi-
ronment, which it minimally underperforms. Interestingly, the
ATLA retrained networks, while resistant to Zhang’s attack,
were less robust than the PPO model to our attack method.
This observation is especially evident in the HalfCheetah and
Walker2D environments. While the LSTM models were still
more robust across the board, our method was shown to de-
grade performance by an additional 54% to 78% compared
to the state-of-the-art. Hopper and Walker2D both have safety
conditions that cause the simulation to end early when vio-
lated, which we achieve for the LSTM models that Zhang’s
attack cannot find. While Half Cheetah and Ant do not have
safety conditions, we find rewards that are, on average, about
2400 less.
Interpretations of performance degradation. Our method is
guided by total rewards, which is a heuristic not only for how
well the agent achieves a goal but also for the overall safety
and stability of the system. However, the reward function can
be replaced by any metric, including STL robustness metric
that represent the safety of the system. We explore this possi-
bility further in the Dubins Rejoin case study in section V-F
While we do not embed explicit safety criteria within our
adversarial objectives, we notice that the attacked trajectories
of the Mujoco robotic trials behave in an intuitively counter-
productive and unsafe manner. Figure 4 shows the final state
of a HalfCheetah simulation for clean and attacked (Zhang’s
and Zero-One Attack) policies. The cheetah runs to the right
of the stage (i.e., forward) when the policy is not adversarially
attacked. Zhang’s attack leads it to collapse and inch backward
slowly, while our attack leads the cheetah to run backward.

D. Time Jitter Evaluation

We evaluate our jitter optimization method on the same
Mujoco environments and report the results in Table II. For
performance comparison, we evaluate two other jitter patterns,
random and alternating. The results show that certain environ-
ments are more vulnerable to jitter than others. For example,
a random attack on Hopper and Walker degrades performance
(as a percentage of total reward) significantly more than in
Half Cheetah and Ant.

In one attack instance, the Ant PPO model, our optimized

TABLE I: Average Reward ± Standard Deviation over 10 different starting states under sensor attacks.

Environment Attack Strength δ Network Clean Reward Zhang’s Attack [12] Zero-One Attack

Half Cheetah 0.15

Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

7234± 112

5644± 42

6675± 167

−530± 220

3129± 79

5466± 194

−1337± 284

−1707± 247

3098± 377

Hopper 0.075

Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

3389± 6

2493± 1085

3374± 533

638± 3

1001± 30

2077± 865

763± 303

684± 96

1212± 236

Walker2D 0.05

Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

4282± 1054

3555± 965

4022± 44

1079± 112

2206± 815

3940± 74

743± 428

293± 118

1246± 110

Ant 0.15

Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

5877± 152

4640± 47

5306± 168

161± 34

−195± 606

3560± 93

−407± 185

−406± 217

1177± 198

0 20 40 60 80 100

Partition Length

2000

0

2000

4000

6000

Av
er

ag
e

R
ew

ar
d

Observation Noise
Jitter
Combined

Fig. 5: HalfCheetah Average Reward under Zero-One Attack, on 10 different
starting states, over varying time partitions τ . A clear performance valley is
present for τ = 20 − 25, which is the sweet spot between exploitation and
exploration for our method in this environment.

approach performs worse, but similar, to the alternating attack
pattern. This is an example where our approach doesn’t nec-
essarily find the global optima, in part due to the highly non-
linear nature of the search problem. There also appears to be
no correlation between improved performance to jitter attacks
and any network defense, which is intuitive since the defense
is designed specifically against observation attacks.

Overall, our optimization approach outperforms the base-
line Random and Alternating methods, showcasing that jitter
added in particular ways can have a substantial influence on
the agent’s performance. This is best shown in Hopper and
Walker, where optimizing jitter results in almost immediate
failure, causing the reward to be close to or less than 0. No-
tably, these results challenge the intuitive assumption that an
Alternating pattern results in worst-case behavior. Our attack
illustrates that there exist vulnerabilities in policies trained
under MDP assumptions – slight deviations to the actuation
time can degrade the agent’s performance in extreme ways.

E. State-Time Noise Evaluation

Additionally, we show that combining observation and time
attacks can further degrade model performance. At each time-
step, we identify adversarial perturbations of both δ and γ.

0 200 400 600 800 1000

Simulation Step
2000

0

2000

4000

6000

R
ew

ar
d

Nominal
State Optimization
Zhang's Attack
Zero-One Attack

Fig. 6: HalfCheetah Adversarial Traces that show the reward achieved by var-
ious agents over the total simulation time. The Nominal agent is not attacked,
Zhang’s Attack agent is attacked using the Zhang et al. method, and the
remaining two agents are attacked using Zero-One Attack. State Optimization
uses an attack that only uses the outer optimization detailed in Section IV-A1.
The full Zero-One Attack attack that leverages both optimization techniques.
In both methods, we empirically search for and set the best partition parameter
τ .

Table III displays reward achieved by variants of the Zero-
One Attack: for state observation attacks only (column 4), for
actuation jitter only (column 5), and both combined (column
6). The combined approach is generally extremely powerful:
compared with the clean reward, we observe degradation over
100%. In a few cases, the combined approach is only compa-
rable with the Observation-only or Jitter-only variants, which
we attribute to randomness over optimization parameters and
the challenge of the increased search dimension within the
combined optimization problem.

F. Safe-RL Case Study

We implement the Zero-One Attack on the DubinsRejoin
flight formation task from the SafeRL benchmark suite de-
veloped by the Air Force Research Lab (AFRL) [14]. This
demonstrates the generalizability of our attack beyond tradi-
tional RL benchmarks; moreover, we illustrate how the attack
can be used to falsify a specification that is different than the
reward used to train the system. The networks were trained
using a four-part reward function that aims to navigate the fol-

TABLE II: Actuation time jitter attack results. Shown are the average ending reward ± standard deviation of simulations for each environment over 10 different
starting states given various actuation time schedules. The Clean Reward column displays the reward for controllers actuating on the default periodic schedule.

Environment Network Clean Reward Random Alternating Zero-One Attack

Half Cheetah
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

7234± 112

5644± 42

6675± 167

4014± 627

4305± 1259

2957± 1519

1340± 632

1613± 1149

1678± 953

−264± 229

−166± 509

−69± 168

Hopper
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

3389± 6

2493± 1085

3374± 533

1061± 11

1062± 27

1064± 89

1024± 25

1119± 45

1113± 59

8± 1

5± 1

4± 0

Walker2D
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

4282± 1054

3555± 965

4022± 44

1165± 195

956± 68

1025± 46

953± 42

525± 426

1009± 45

−30± 14

−46± 36

1± 3

Ant
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

5877± 152

4640± 47

5306± 168

2088± 1250

4340± 396

4016± 1035

1391± 498

2902± 1088

2546± 1118

1494± 436

2454± 515

1416± 206

TABLE III: Zero-One Attack under all three threat models, observation noise, jitter, and both. Shown are the average rewards ± standard deviation over 10
different starting states. In parenthesis, we include the percentage degradation achieved with respect to the average clean reward.

Environment Network Clean Reward Zero-One Attack:
Observation Perturbations Only

Zero-One Attack:
Time Jitter Only

Zero-One Attack:
Combined

Half Cheetah
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

7234± 112

5644± 42

6675± 167

−1337± 284 (118%)

−1707± 247 (130%)

3098± 377 (54%)

−264± 229 (104%)

−166± 509 (103%)

−69± 168 (101%)

−2412± 300 (133%)

−3737± 312 (166%)

−840± 312 (113%)

Hopper
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

3389± 6

2493± 1085

3374± 533

763± 303 (77%)

684± 96 (73%)

1212± 236 (64%)

8± 1 (100%)

5± 1 (100%)

4± 0 (100%)

7± 1 (100%)

4± 0 (100%)

4± 0 (100%)

Walker2D
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

4282± 1054

3555± 965

4022± 44

743± 428 (83%)

293± 118 (92%)

1246± 110 (69%)

−30± 14 (101%)

−46± 36 (101%)

1± 3 (100%)

−8± 6 (100%)

−32± 12 (101%)

3± 3 (100%)

Ant
Nominal
Defended (ATLA)
Defended (ATLA:LSTM + SA reg)

5877± 152

4640± 47

5306± 168

−407± 185 (107%)

−406± 217 (109%)

1177± 198 (78%)

1494± 436 (75%)

2454± 515 (47%)

1416± 206 (73%)

−417± 91 (107%)

−392± 58 (108%)

695± 179 (87%)

lower aircraft into formation at a specified distance behind the
lead without colliding. For our case study, we use the minimize
the distance between the aircraft in lieu of total reward, to
represent an adversarial objective intended to cause a collision.

Figure 7 shows an example of an adversarial trajectory
found by our approach using state perturbations with attack
strength ϵ = 0.3. Within the 2D state space, the lead and
wingman aircrafts are flying independently. The wingman’s
controller should guide it into formation flight along the route
of the lead, without getting too close and colliding. For the
nominal controller, the wingman (blue) closely follows the
lead (black) at a safe distance. The Nominal controller is
well-trained: a collision was extremely rare. The optimized
adversarial observation perturbations from Zero-One Attack
can be seen to guide the wingman into a collision state (red).
We were able to realize collisions using our attack approach
for all attempted trials, indicating that the approach effectively
searches the observation state space.

Actuation-time perturbations alone were unable to cause
collisions, revealing that the plant and controller were robust
to adversarial jitter. However, we found that in the combined
threat model, Zero-One Attack finds unsafe trajectories with
attack strength ϵ = 0.15, half the attack strength than needed
in the state observation noise threat model alone.

Fig. 7: Example trajectories of lead and wingman aircrafts ahead of a collision
caused by observation perturbations within the 2D state space. All trajectories
shown represent aircraft positions over time, starting at the bottom right of
the figure and concluding at the top left (direction of arrows). Without the
manipulated observations, the wingman (blue) is controlled by the neural
network policy to fly steady in formation at a specified radius behind the
lead (black). Zero-One Attack finds perturbations at each timestep that would
instead lead the wingman to collide with the lead (red).

VI. RELATED WORK

Several works have approached the problem of robust re-
inforcement learning systems from various perspectives. One
line of work looks at training agents that can recover well
from a changing environment. Robust Markov decision pro-
cesses (RMDP) [23] facilitate RL modeling in the presence of
stochastic physical environment variables (i.e., varying grav-
ity, mass, friction, etc..). Other frameworks address a similar
problem by training an agent within two-player, minimax opti-
mization [24]–[26]. These works seek to answer a challenging
but different problem from ours: we investigate robustness
to misread state observations (through adversarial attacks or
faulty sensors) and do not assume an adversary can arbitrarily
manipulate the underlying true environment.

A more relevant line of work has focused on developing ob-
servational attacks on RL agents, wherein the underlying true
environment during the attack is unchanged. Behzadan and
Munir [7], Huang et al [5], and Kos and Song [6] all showed
definitively in 2017 that modern deep RL policies for Atari
games are vulnerable to standard gradient-based adversarial
machine learning techniques. Improvements on this technique
sought to incorporate some form of forecasting, to reduce the
number of attacked time steps and illustrate agents may be
vulnerable to single points of failure [27], [28].

The strongest attack to-date by Zhang [12] introduces the
state-adversarial Markov decision process (SA-MDP) [21] to
facilitate the framework of an ”optimal” adversary for perturb-
ing observations within a defined bounded set to diminish re-
wards, akin to the notion of minimal adversarial perturbations
when minimizing the bounded set. They propose a method
for training an approximation of this optimal adversary, and
they show that robust agent policies can be obtained by using
this adversary during retraining. Their retrained, ATLA, PPO
models perform well in response to their trained adversary. Our
work adopts and builds upon this threat model for observation
noise perturbations, using their proposed RL benchmarks and
networks, to advance the state-of-art.

In parallel, the formal methods community has taken mul-
tiple approaches to verification of these systems [29], [30].
Typical solutions aim to find tight bounds on the uncertainty
around given examples that would alter a network’s out-
put [31]–[33], but solutions to the problem have been limited
to low-dimensional systems with relatively few time-steps.
Ongoing challenges stem from non-linear dynamics and ex-
ponential blow-up from set splitting on non-linear activation
functions. In contrast, RL benchmarks generally contain sig-
nificantly more difficult control problems than current tools
can verify [34]. Recent work has attempted to perform closed-
loop verification on systems with sensor noise using these
tools [35], [36], but use is limited.

Considering actuation time, a line of work has focused on
improving the robustness of control systems to delayed envi-
ronments. Most of this work has focused on domain adapta-
tion: i.e., ensuring that a model trained in simulation can per-
form well in the physical world. Previous works have used do-

main randomization techniques to address transferring policies
across domains that may have different state transition delays.
[9], [37] The closest works to ours have specifically sought
to estimate expected behavior of RL systems in response to
action delays. Sim2Real incorporates sampled execution de-
lays into the training process to develop RL policies robust to
delays within the entire closed-loop process. [10] Secondly,
Chen et al. reformulated a standard markov decision process
to incorporate multi-step time delays. To our knowledge, none
have addressed actuation-time jitter from an adversarial per-
spective, rather than random jitter.

VII. CONCLUSION

In this work, we present an adversarial attack generation
method called the Zero-One Attack. Our attack targets neural
network control systems and degrades performance by adding
bounded observation and/or timing noise. Physical world de-
ployments of NNCS will be subject to sensor noise and timing
jitter arising from the real-time scheduler, and control theoretic
means to evaluate robustness are not applicable to this class
of systems. Thus, until formal verification methods for NNCS
can scale to handle complex networks and systems as well as
provide global robustness guarantees, the most practical ap-
proach is to run strong attacks such as ours in order to evaluate
the possible performance degradation from such noise.

We evaluated the Zero-One Attack on adversarially-
defended networks and achieved significant performance
degradation beyond the state-of-the-art. Further, we introduced
the bounded time perturbation threat model and adapted the
Zero-One Attack to find adversarial traces using only time or
both state-time perturbations. With both state and time pertur-
bations, we showed the attack strength gets amplified—noise
within smaller bounds can degrade performance significantly.

Future work is needed to adapt the method for defense—
to train more robust models. Particularly, the current runtime
of the approach is large making it impractical for use within
an adversarial retraining scheme, where often thousands of
attacked traces are needed.

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the Air Force
Office of Scientific Research and the Office of Naval Research
under award numbers FA9550-19-1-0288, FA9550-21-1-0121,
FA9550-23-1-0066 and N00014-22-1-2156, and the National
Science Foundation under Award No. 2237229. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the United States Air Force or the United
States Navy.

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161–166, 2011.

[2] Y. Li, “Deep reinforcement learning: An overview,” 2018.
[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” in 2nd Inter-
national Conference on Learning Representations, ICLR 2014, 2014.

[4] B. Luo, Y. Liu, L. Wei, and Q. Xu, “Towards imperceptible and robust
adversarial example attacks against neural networks,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[5] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial Attacks on Neural Network Policies,” arXiv:1702.02284
[cs, stat], Feb. 2017, arXiv: 1702.02284. [Online]. Available:
http://arxiv.org/abs/1702.02284

[6] J. Kos and D. Song, “Delving into adversarial attacks on deep policies,”
arXiv:1705.06452 [cs, stat], May 2017, arXiv: 1705.06452. [Online].
Available: http://arxiv.org/abs/1705.06452

[7] V. Behzadan and A. Munir, “Vulnerability of deep reinforcement learn-
ing to policy induction attacks,” in Machine Learning and Data Mining
in Pattern Recognition, P. Perner, Ed. Cham: Springer International
Publishing, 2017, pp. 262–275.

[8] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell, Feed-
back control of dynamic systems. Prentice hall Upper Saddle River,
2002, vol. 4.

[9] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[10] S. S. Sandha, L. Garcia, B. Balaji, F. Anwar, and M. Srivastava,
“Sim2real transfer for deep reinforcement learning with stochastic state
transition delays,” in Conference on Robot Learning. PMLR, 2021, pp.
1066–1083.

[11] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[12] H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh, “Robust reinforcement
learning on state observations with learned optimal adversary,” 2021.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[14] U. J. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap,
and K. L. Hobbs, “Safe reinforcement learning benchmark environments
for aerospace control systems,” in 2022 IEEE Aerospace Conference
(AERO). IEEE, 2022, pp. 1–20.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” stat, vol. 1050, p. 20, 2015.

[17] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adver-
sarial examples and black-box attacks,” in International Conference on
Learning Representations, 2016.

[18] Y. Gong, B. Li, C. Poellabauer, and Y. Shi, “Real-time adversarial
attacks,” in Proceedings of the 28th International Joint Conference on
Artificial Intelligence, 2019, pp. 4672–4680.

[19] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A. Rahmati, and D. Song, “Robust physical-world attacks on machine
learning models,” arXiv preprint arXiv:1707.08945, vol. 2, no. 3, p. 4,
2017.

[20] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in Artificial intelligence safety and security.
Chapman and Hall/CRC, 2018, pp. 99–112.

[21] H. Zhang, H. Chen, C. Xiao, B. Li, M. Liu, D. Boning, and C.-J. Hsieh,
“Robust deep reinforcement learning against adversarial perturbations
on state observations,” 2021.

[22] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[23] V. Goyal and J. Grand-Clément, “Robust markov decision process: Be-
yond rectangularity,” 2021.

[24] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial
reinforcement learning,” 2017.

[25] A. Gu, S. Lu, P. Ram, and L. Weng, “Min-max bilevel multi-objective
optimization with applications in machine learning,” 2023.

[26] P. Czempin and A. Gleave, “Reducing exploitability with population
based training,” 2023.

[27] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of Adversarial Attack on Deep Reinforcement Learning
Agents,” arXiv:1703.06748 [cs, stat], Nov. 2019, arXiv: 1703.06748.
[Online]. Available: http://arxiv.org/abs/1703.06748

[28] J. Sun, T. Zhang, X. Xie, L. Ma, Y. Zheng, K. Chen, and Y. Liu,
“Stealthy and Efficient Adversarial Attacks against Deep Reinforcement

Learning,” arXiv:2005.07099 [cs], May 2020, arXiv: 2005.07099.
[Online]. Available: http://arxiv.org/abs/2005.07099

[29] T. T. Johnson, D. Manzanas Lopez, L. Benet, M. Forets, S. Guadalupe,
C. Schilling, R. Ivanov, T. J. Carpenter, J. Weimer, and I. Lee, “Arch-
comp21 category report: artificial intelligence and neural network control
systems (ainncs) for continuous and hybrid systems plants,” EPiC Series
in Computing, vol. 80, 2021.

[30] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu, “First three
years of the international verification of neural networks competition
(vnn-comp),” International Journal on Software Tools for Technology
Transfer, pp. 1–11, 2023.

[31] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “Nnv: the neural network verifica-
tion tool for deep neural networks and learning-enabled cyber-physical
systems,” in International Conference on Computer Aided Verification.
Springer, 2020, pp. 3–17.

[32] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of neural network controllers using taylor
model preconditioning,” in International Conference on Computer Aided
Verification. Springer, 2021, pp. 249–262.

[33] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo,
“Fossil: A software tool for the formal synthesis of lyapunov functions
and barrier certificates using neural networks,” in Proceedings of
the 24th International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available: https://doi.org/
10.1145/3447928.3456646

[34] M. Everett, “Neural network verification in control,” in 2021 60th IEEE
Conference on Decision and Control (CDC), 2021, pp. 6326–6340.

[35] V. Krish, A. Mata, S. Bak, and A. Rahmati, “Provable observation noise
robustness for neural network control systems,” Research Directions:
Cyber-Physical Systems, vol. 1, p. e2, 2023.

[36] S. Bak, “nnenum: Verification of relu neural networks with optimized
abstraction refinement,” in NASA Formal Methods Symposium. Springer,
2021, pp. 19–36.

[37] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al., “Learning
dexterous in-hand manipulation,” The International Journal of Robotics
Research, vol. 39, no. 1, pp. 3–20, 2020.

[38] Y.-R. Liu, Y.-Q. Hu, H. Qian, C. Qian, and Y. Yu, “ZOOpt: a
toolbox for derivative-free optimization,” Science China Information
Sciences, vol. 65, no. 10, Sep 2022. [Online]. Available: https:
//doi.org/10.1007%2Fs11432-021-3416-y

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

[40] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in International
conference on machine learning. PMLR, 2020, pp. 2206–2216.

[41] ——, “Minimally distorted adversarial examples with a fast adaptive
boundary attack,” in International Conference on Machine Learning.
PMLR, 2020, pp. 2196–2205.

[42] G. W. Ding, L. Wang, and X. Jin, “AdverTorch v0.1: An adversarial
robustness toolbox based on pytorch,” arXiv preprint arXiv:1902.07623,
2019.

[43] Y.-Q. Hu, H. Qian, and Y. Yu, “Sequential classification-based optimiza-
tion for direct policy search,” 02 2017.

[44] Y.-R. Liu, Y.-Q. Hu, H. Qian, and Y. Yu, “Asynchronous classification-
based optimization,” in Proceedings of the First International
Conference on Distributed Artificial Intelligence, ser. DAI ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3356464.3357709

http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1705.06452
http://arxiv.org/abs/1703.06748
http://arxiv.org/abs/2005.07099
https://doi.org/10.1145/3447928.3456646
https://doi.org/10.1145/3447928.3456646
https://doi.org/10.1007%2Fs11432-021-3416-y
https://doi.org/10.1007%2Fs11432-021-3416-y
https://doi.org/10.1145/3356464.3357709

APPENDIX A
ENVIRONMENT DETAILS

TABLE IV: Details of each environment with depictions. For all environments, the agents are required to achieve a particular goal immediately (move
forward or fly towards a target region) and are further rewarded for continuing to achieve this task over time. For the Mujoco environments, the agents are
penalized for moving backward (left), falling down, and making high-magnitude, variable actions. The DubinsRejoin agent is penalized for not reaching the
rejoin radius within the simulation length or colliding with the lead aircraft.

HalfCheetah Hopper Walker Ant DubinsRejoin

Task
Apply a torque on joints
to make the cheetah run

forward (right)

Apply torque on
hinges to make hops

forward (right)

Apply torque to feet,
legs, and thighs in

coordination to walk
forward (right)

Apply torque on joints
in coordination to

crawl forward (right)

Control throttle and rudder
actuators to fly wingman

aircraft at a specified
radius around lead

Reward Function
Distance moved

forward, with large
actions penalized.

Distance moved
forward, with large
actions penalized.

Episode ends when
agent falls over.

Distance moved
forward, with large
actions penalized

Episode ends when
agent falls over.

Distance moved
forward, with large
actions penalized

Time spent in
rejoin region,

penalized for nearing
too close to lead

State Dimension 17 11 17 27 8
Action Dimension 6 3 6 8 2

APPENDIX B
IMPLEMENTATION DETAILS

For our evaluations, we use the ZOOpt [38] library for the
outer optimization, Projected Gradient Descent for the inner
gradient-based optimization, and chose time partition parame-
ter τ empirically for each environment. While any pair of opti-
mization methods could be used for the zeroth-order outer op-
timization and the gradient-based inner optimization, we found
that ZOOpt and PGD performed well across all environments.
For the Mujoco environments, we use the trained policies
provided by Zhang et al.a for all three networks (Nominal and
two ATLA-defended). For the DubinsRejoin environment, we
use the SafeRL codebaseb to train a Nominal PPO with the
provided default parameters (rect norm).
To avoid variance in training, we use Zhang et al.’s saved
environments for environment set-up, as well as their network
architecture, weights, and filters. For consistent attack strength,
we use their maximum state perturbation parameter ϵ for each
environment, where s∗ ∈ B(s, ϵ) which is the l∞ norm ball
around state s (all states are normalized before network exe-
cution). We evaluate both attacks on the three network types
over ten different starting states and report the average reward
and standard deviation.

A. Projected Gradient Descent

Projected Gradient Descent (PGD) [39] is considered a univer-
sal first-order technique for finding adversarial examples (i.e.,
it represents the strongest attack utilizing local first-order in-

formation about a network). PGD is formulated as an iterative
optimization process. Given an initial sample, a target action,
and perturbation limit ϵ, the sample is iteratively updated in a
direction that maximizes an adversarial loss, which is a func-
tion of the network’s weights and target action. The gradient
of this adversarial loss is used to estimate the direction of the
update. Each update is followed by a projection back onto
the linf ball (by clipping the values of the adversarial exam-
ple to ±ϵ. We tested a handful of commonly used methods
(FGSM [16], AutoAttack [40], FABattack [41]) but empiri-
cally found that PGD performed well and fast enough to use as
our inner optimization method. We use the AdverTorch imple-
mentation of PGD [42], which includes initial randomization.

B. State Optimization

The ZOOpt [38] library is a toolbox for zeroth-order opti-
mization suited for high-dimensional problems. Their main
optimization technique is from work from Hu et al. [43],
which uses a classification-based optimizer and proves effec-
tive for problems with many local optima. Additionally, an
asynchronous version exists [44], allowing for parallelization,
which allows the cost function to scale favorably when multi-
ple gradient attacks can be done simultaneously. Other zero-
order optimization techniques could have been used; particu-
larly, we tested Bayesian Optimization but found that ZOOpt
performed well and didn’t require hyperparameter tuning.

ahttps://github.com/huanzhang12/ATLA robust RL
bhttps://github.com/act3-ace/SafeRL

https://github.com/huanzhang12/ATLA_robust_RL
https://github.com/act3-ace/SafeRL

	Introduction
	Background
	Neural Network Control System (NNCS)
	Reinforcement Learning
	Gradient-based Adversarial Machine Learning Attacks

	Preliminaries
	Threat Model
	Notation

	Methodology
	Zero-One Attack Approach
	State Optimization
	Action Optimization

	Zero-One Attack Extension to Actuation Time

	Evaluation
	Environments
	Optimization Tools
	Observation Noise Evaluation
	Time Jitter Evaluation
	State-Time Noise Evaluation
	Safe-RL Case Study

	Related Work
	Conclusion
	Acknowledgements
	References
	Appendix A: Environment Details
	Appendix B: Implementation Details
	Projected Gradient Descent
	State Optimization

