
Falsification using Reachability of Surrogate KoopmanModels
Stanley Bak

stanley.bak@stonybrook.edu
Stony Brook University

New York, USA

Sergiy Bogomolov
bogom.s@gmail.com

Newcastle University
Newcastle upon Tyne, UK

Abdelrahman Hekal
b6062805@ncl.ac.uk
Newcastle University

Newcastle upon Tyne, UK

Niklas Kochdumper
niklas.kochdumper@tum.de

Stony Brook University
New York, USA

Ethan Lew
elew@galois.com

Galois, Inc
Portland, Oregon, USA

AndrewMata
andrew.mata@stonybrook.edu

Stony Brook University
New York, USA

Amir Rahmati
amir@rahmati.com
Stony Brook University

New York, USA

Abstract

Black-box falsification problems are most often solved by numerical
optimization algorithms. In this work, we propose an alternative ap-
proach, where simulations are used to construct a surrogate model
for the system dynamics using data-driven Koopman operator lin-
earization. Since the dynamics of the Koopman model are linear, the
reachable set of states can be computed and combinedwith an encod-
ingof the signal temporal logic specification inamixed-integer linear
program (MILP). To determine the next sample, anMILP solver com-
putes the least robust trajectory inside the reachable set of the sur-
rogate model. The trajectory’s initial state and input signal are then
executed on the original black-box system, where the specification
is either falsified or additional simulation data is generated that we
use to retrain the surrogate Koopman model and repeat the process.

The proposed method is highly effective. Evaluation on the com-
plete set of benchmarks taken from the 2022 ARCH falsification
competition demonstrates superior performance—fewer expected
simulations—over all participating tools on 16 out of 19 benchmarks.
Further, on three benchmarks where no tool consistently reports a
falsifying trace, our method reliably uncovers a counterexample.

CCS Concepts

• Computer systems organization→ Embedded and cyber-

physicalsystems; •Mathematicsofcomputing→Mixeddiscrete-
continuous optimization; Numerical analysis.

Keywords

Cyber-Physical Systems, Falsification, Signal Temporal Logic, Koop-
man Operator Linearization, Reachability Analysis

ACMReference Format:

Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper,
Ethan Lew, AndrewMata, andAmir Rahmati. 2024. Falsification using Reach-
ability of Surrogate Koopman Models. In 27th ACM International Confer-
ence on Hybrid Systems: Computation and Control (HSCC ’24), May 14–16,
2024, Hong Kong, Hong Kong. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3641513.3650141

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0522-9/24/05. . . $15.00
https://doi.org/10.1145/3641513.3650141

generate

random input
speci cation

falsi ed?

update

surrogate model

determine most-

critical input

execute

real system

no

yes

Figure 1: Our falsification approach uses formal analysis of a surrogatemodel

to determine the next input signal to try.

1 Introduction

In recent years, vast effort has been focused on embedding comput-
ing and communication capabilities in objects and structures in the
physical environment [29, 40]. Such cyber-physical systems (CPS),
including autonomous vehicles, aerospace systems, and medical ap-
plications, are often safety-critical, where human life could be en-
dangered if these systems fail. Consequently, reasoning about the
safety of such systems has become a topic of substantial interest.

Although formal verification approaches for CPS, such as reacha-
bility analysis [5, 11] and theorem proving [39, 42] have made great
progress, many real-world CPS are still too complex or modeled in
frameworks that preclude analysis by existing formalmethods. Thus,
there is an urgent need for alternative analysis techniques.

One suchmethod is falsification,which is an orthogonal approach
to verification: while verification aims to prove that a system satis-
fies all safety properties, falsification tries to find counterexamples
that violate such properties. The corresponding safety properties
are often represented in signal temporal logic (STL) [33], which can
model complex behaviors of continuous system states over time.

In this work, we present a new approach for falsification, whose
high-level concept is visualized in Fig. 1. In contrast to most ex-
isting falsification methods, which aim to falsify systems by solv-
ing a bounded optimization problem numerically, our approach is
based on the construction of a surrogate model using Koopman op-
erator linearization [26, 28]. Koopman operator linearization is a
data-driven modeling approach. It uses machine learning to create
a system model approximation from execution trajectories. It has
been successfully applied to predict behaviors in a set of diverse do-
mains [28], including epidemiology, neuroscience, andfinancial trad-
ing. It has also been used in CPS for model predictive control [27]
and state estimation [38]. Our approach is, to the best of our knowl-
edge, the first that uses it for falsification.

One of the advantages of the Koopman operator approach is that
it results in a linear representation of the system dynamics, while

https://orcid.org/0000-0003-4947-9553
https://orcid.org/0000-0002-0686-0365
https://orcid.org/0009-0008-9685-0558
https://orcid.org/0000-0001-6017-7623
https://orcid.org/0000-0002-6509-6846
https://orcid.org/0000-0003-4947-9553
https://orcid.org/0000-0003-4947-9553
https://doi.org/10.1145/3641513.3650141
https://doi.org/10.1145/3641513.3650141
https://doi.org/10.1145/3641513.3650141

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, AndrewMata, and Amir Rahmati

beingmore accurate than other linearization techniques such as Tay-
lor series expansion [25] or state-space linearization [30]. The linear
nature of the Koopman model allows us to determine witness initial
state and input signals that falsify the surrogate model efficiently
via mixed-integer linear programming. However, a counterexam-
ple of the surrogate model may not correspond to a counterexample
for the original black-box system. Therefore, if the counterexample
proves to be spurious, we use it to further refine the learned Koop-
man model. This iterative process continues until a valid counterex-
ample for the black-box system is found.

The main contributions of this paper are as follows:
• We present the first approach that uses Koopman operator lin-
earization for black-box falsification of CPS. Our framework it-
eratively constructs a surrogate model that gets analyzed using
MILP to select the next trajectory.
• We optimize our approach in several ways, using (1) reachable
set information to simplify the MILP problem, (2) periodic data
resets to improve the model’s local accuracy, and (3) a specifica-
tion offset approach to counteract observed errors in the learned
Koopmanmodel.
• We demonstrate the effectiveness of our approach by a compari-
son to state-of-the-art falsification tools using the complete set of
benchmarks from the 2022 ARCH falsification competition [18].
Our approach records a lower number of average simulations re-
quired to find a falsifying trace for 16 out of 19 benchmarks.

2 RelatedWork

The most common approach for falsification is to apply quantitative
robustness semantics for STL [20], which maps a trajectory of the
system to a scalar robustness value that describes how robustly the
trajectory satisfies a temporal logic specification. Input signals are
usually parameterized by the values of the input signal at a finite set
of control points that are distributed over the considered time hori-
zon. The continuous-time input signal is then obtained by interpolat-
ing between the values at the control points using, for example, piece-
wise constant, linear, or polynomial interpolation. Falsification thus
becomes a numerical optimization problem, with the goal of finding
the global minimum robustness over the bounded search space.

While somedeterministicoptimizationstrategies suchasgradient-
decent have been considered [2],most falsification approaches apply
probabilistic approaches for global optimization, such as hit-and-run
sampling in combination with Monte Carlo techniques [37], simu-
lated annealing [1], Bayesian optimization [13], the cross-entropy
method [44], ant-colony optimization [7], stochastic optimization
with adaptive restarts [35], or Tabu search [14]. These probabilistic
methods usually aim to either sample points more frequently from
regions that are expected to have low robustness (e.g., cross-entropy
method), or from regions where the uncertainty on the robustness
values is large (e.g., Bayesian optimization). One common challenge
with numerical optimization falsification approaches is that they
usually perform poorly if the search space is high-dimensional due
to the large number of required sample points. Moreover, quantita-
tive STL semantics reduce the system behavior to a scalar robustness
value, and so optimization-based falsification approaches ignore the
dynamics of the system to a large extent. In contrast, our learned

surrogate models—and therefore our sample selection strategy—
incorporate relationships about all of the system states over time.

Improvements and extensions for falsification include tailored ap-
proaches for falsifying conjunctions of multiple requirements [34],
and using different robustness semantics such as additive robustness
[17] or QB-robustness [51]. Some approaches adapt the space of pos-
sible input signals by optimizing the number of control points [3]
or by refining the temporal and spacial granularity of the input sig-
nals [19]. In addition, there exist multiple shooting approaches [52]
that aim to minimize the gaps between multiple smaller trajectory
segments. Reinforcement learning [49] has been applied for falsifica-
tion. Other approaches [8, 10][24, Sec. 4.1] extract falsifying trajec-
tories from reachable sets, but are restricted to white-box systems
with simple reach-avoid specifications.

Simple surrogate models have been considered for falsification.
One approach [47] learns a Mealy automaton as a surrogate model
and then falsifies this via model checking. Another method [36]
uses data-driven system identification [45] to replace a compute-
intensive black-box CPS simulator, but then still relies on numeri-
cal optimization for falsification. Our approach, in contrast, learns a
continuous surrogate model and computes its least robust trajectory
using a combination of reachability analysis and MILP.

Common tools for falsification are ARIsTEO [36], Breach [15],
FalCAuN1, falsify2, FalStar3, ForeSee4, S-TaLiRo [6], andΨ-TaLiRo
[46]. ARIsTEO is build on top of S-TaLiRo and tailored toward sys-
tems where simulations are computationally expensive, FalCAuN
uses the Mealy automaton approach [47], falsify applies reinforce-
ment learning [49], FalStar is based on input signal refinement [19],
ForeSee uses QB-robustness [51], Breach and S-TaLiRo support sev-
eral different optimization techniques such as simulated annealing
and stochastic optimization with adaptive restarts, and Ψ-TaLiRo is
the Python version of S-TaLiRo.

3 Problem Formulation

We represent a CPS system as a black-box modelM, which takes as
input an initial state 𝑥0 ∈R𝑛 and an input signal𝑤 (𝑡) : [0,𝑇]→R𝑚
with time horizon𝑇 and produces an output signal𝑦 (𝑡) : [0,𝑇]→R𝑠 :

𝑦 (𝑡)←M
(
𝑥0,𝑤 (𝑡)

)
. (1)

A trajectory or trace of system (1) is represented by a tuple 𝜏 =

(𝑥0,𝑤 (𝑡),𝑦 (𝑡)) consisting of the initial state 𝑥0 as well as the input
signal𝑤 (𝑡) and the corresponding output signal𝑦 (𝑡).

Specifications are used to describe the desired system behavior
and are represented as signal temporal logic (STL) formulas [33]:

Definition 1 (Signal Temporal Logic). Given a set of atomic
predicates𝑝 ∈A which are defined as𝑝 := 𝑓 (𝑦)>0, where 𝑓 :R𝑠→R is
a nonlinear function, the syntax for a signal temporal logic formula is

𝜑 :=True
�� 𝑝 �� ¬𝜑 �� 𝜑1∧𝜑2 �� □[𝑎,𝑏]𝜑 �� ^[𝑎,𝑏]𝜑 �� 𝜑1𝑈 [𝑎,𝑏]𝜑2,

where𝑎 and𝑏with𝑏 ≥𝑎 are non-negative scalars denoting timebounds.
For a signal𝑦 (𝑡) :R≥0→R𝑠 , the semantics of STL is defined as follows:

𝑦 (𝑡) |=𝑝 ⇔ 𝑓 (𝑦 (0))>0

1https://github.com/MasWag/FalCAuN
2https://github.com/yoriyuki-aist/Falsify/
3https://github.com/ERATOMMSD/falstar
4https://github.com/choshina/ForeSee

https://github.com/MasWag/FalCAuN
https://github.com/yoriyuki-aist/Falsify/
https://github.com/ERATOMMSD/falstar
https://github.com/choshina/ForeSee

Falsification using Reachability of Surrogate KoopmanModels HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

𝑦 (𝑡) |=¬𝜑 ⇔ ¬(𝑦 (𝑡) |=𝜑)
𝑦 (𝑡) |=𝜑1∧𝜑2 ⇔ (𝑦 (𝑡) |=𝜑1)∧(𝑦 (𝑡) |=𝜑2)

𝑦 (𝑡) |=𝜑1𝑈 [𝑎,𝑏]𝜑2 ⇔ ∃𝑐 ∈ [𝑎,𝑏] :𝑦 (𝑡+𝑐) |=𝜑2
∧ ∀𝑑 ∈ [0,𝑐) :𝑦 (𝑡+𝑑) |=𝜑1 .

Moreover, the semantics for thefinallyoperator^[𝑎,𝑏]𝜑 :=True𝑈 [𝑎,𝑏]𝜑
and the globally operator □[𝑎,𝑏]𝜑 :=¬^[𝑎,𝑏]¬𝜑 directly follows from
the semantics of the until operator 𝜑1𝑈 [𝑎,𝑏]𝜑2.

To guide the search toward signals that violate the specification,
wewill use the quantitative robustness for temporal logic [20],which
specifies how robustly a signal satisfies an STL formula:

Definition 2 (Robustness). The quantitative robustness seman-
tics of STL is represented by a function Q(𝜑,𝑦 (𝑡)) that maps an STL
formula 𝜑 and a signal𝑦 (𝑡) to a scalar value. This function is recur-
sively defined as follows:

Q(True,𝑦 (𝑡)) := ∞
Q(𝑝,𝑦 (𝑡)) := 𝑓 (𝑦 (𝑡))
Q(¬𝜑,𝑦 (𝑡)) := −Q(𝜑,𝑦 (𝑡))

Q(𝜑1∧𝜑2,𝑦 (𝑡)) := min
(
Q(𝜑1,𝑦 (𝑡)),Q(𝜑2,𝑦 (𝑡))

)
Q(𝜑1∨𝜑2,𝑦 (𝑡)) := max

(
Q(𝜑1,𝑦 (𝑡)),Q(𝜑2,𝑦 (𝑡))

)
Q(□[𝑎,𝑏]𝜑,𝑦 (𝑡)) := min

𝑐∈[𝑡+𝑎,𝑡+𝑏]
Q(𝜑,𝑦 (𝑐))

Q(^[𝑎,𝑏]𝜑,𝑦 (𝑡) := max
𝑐∈[𝑡+𝑎,𝑡+𝑏]

Q(𝜑,𝑦 (𝑐))

Q(𝜑1𝑈 [𝑎,𝑏]𝜑2,𝑦 (𝑡)) := max
𝑐∈[𝑡,𝑡+𝑏]

min
(
Q(𝜑2,𝑦 (𝑐)),

min
𝑑∈[𝑐−𝑎,𝑐]

Q(𝜑1,𝑦 (𝑑))
)
.

The robustness measures the extent to which a signal𝑦 (𝑡) satisfies an
STL formula 𝜑 , where Q(𝜑,𝑦 (𝑡)) ≥ 0 entails satisfaction𝑦 (𝑡) |=𝜑 , and
larger values for Q(𝜑,𝑦 (𝑡) indicate stronger satisfaction.

With the approach presented in this paper, we aim to solve falsi-
fication tasks, which are defined as follows:

Problem 1 (Falsification). Given a CPSmodelM as in (1), a sys-
tem specification in form of a signal temporal logic formula 𝜑 as in
Def. 1, a set of uncertain initial statesX0 ⊂R𝑛 , and a set of uncertain
inputs5 𝑤 (𝑡) ∈W, the goal of falsification is to find an initial state
𝑥0 ∈ X0 and an input signal𝑤 (𝑡) ∈W such that the corresponding
output𝑦 (𝑡)←M(𝑥0,𝑤 (𝑡)) violates the specification𝑦 (𝑡) ̸|=𝜑 .

For ease of notation in the remainder of the paper, we combine the
initial state 𝑥0 and the input signal𝑤 (𝑡) into a tuple𝑢 (𝑡)= (𝑥0,𝑤 (𝑡))
that represents all inputs to the system. Consequently, (1) simplifies
to𝑦 (𝑡)←M(𝑢 (𝑡)), and we write𝑢 (𝑡) ∈U withU =X0×W to de-
note 𝑥0 ∈X0 and𝑤 (𝑡) ∈W.

To better illustrate our approach, we will use the following run-
ning example throughout the paper [22], taken from the 2022 ARCH
falsification competition [18]:

Example 1 (Running Example). An automatic transmission
controller selects a discrete gear from 1 to 4. The system has two in-
puts𝑤 (𝑡)= [𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒,𝑏𝑟𝑎𝑘𝑒]𝑇 that are uncertain within the setW=

5We use𝑤 (𝑡) ∈W as a shorthand for ∀𝑡 ∈ [0,𝑇] :𝑤 (𝑡) ∈W.

Algorithm 1: Koopman Surrogate Falsification
Data: Black-boxCPSmodelM, STL formula𝜑 , input spaceU,

time horizon𝑇 , maximumnumber of simulations𝑁max
Result: Counterexample trajectory 𝜏

1 𝜏←RunSimulation(M,RandomInput(U),𝑇)
2 T ←{𝜏}
3 for 𝑖 =1 to 𝑁max do

4 M𝐾←LearnKoopmanModel(T)
5 R(𝑡)←ComputeReachableSet(M𝐾 ,U,𝑇)

6 𝑢∗←argmin
𝑢 (𝑡) ∈U

Q(𝜑,𝑦 (𝑡)) s.t.

{
𝑦 (𝑡)←M𝐾 (𝑢 (𝑡))
∀𝑡 ∈ [0,𝑇] : 𝑦 (𝑡) ∈R(𝑡)

7 𝜏←RunSimulation(M,𝑢∗,𝑇)
8 if Q(𝜑,𝜏)<0 then
9 return 𝜏 // counterexample found

10 end

11 T ←T∪{𝜏}
12 end

[0,100] × [0,325], and three outputs 𝑦 (𝑡) = [𝑔,𝑣,𝜔]𝑇 , where 𝑔 is the
gear, 𝑣 is the speed of the vehicle, and𝜔 is the angular velocity of the en-
gine. The goal of the falsification problem is to find a trace that violates
the STL formula𝜑 =^[0,30]𝜔 ≥3000∨□[0,4]𝑣 <35 over a simulation
time of𝑇 =30𝑠 . That is, finding a trace where the angular velocity is
less than 3000 for the whole duration of the simulation and the speed
exceeds 35 in the first 4 seconds.

4 Koopman Surrogate Falsification

In this paper, we solve the falsification problem described in Sec. 3 by
constructing and analyzing a surrogate model for the black-box CPS.
The details of our framework shown in Fig. 1 are outlined in Alg. 1:
First, we run a single simulation of the real systemwith random in-
puts and extract the corresponding trajectory 𝜏 (Line 1). We use this
trajectory to learn a surrogate model of the system using Koopman
operator linearization (Line 4). Next, we compute the reachable set
of the Koopmanmodel for the set of all possible inputsU over the
time horizon𝑇 (Line 5). Afterward, we determine the input𝑢∗ to the
Koopmanmodel that violates the specification themost, byminimiz-
ing the robustness in the optimization problem in Line 6, where the
reachable set is used to encode constraints on the system states. Fi-
nally, the determined input is used to generate a trajectory of the real
system, which is again checked against the STL specification. If the
counterexample violates the STL spec on the real system, the loop ter-
minates; otherwise, the extracted trajectory is used to further refine
the Koopman model. In the following, we describe each of the steps
in detail, as well as several enhancements that improve performance.

4.1 KoopmanOperator Linearization

Koopmean operator linearization [26, 28] is amachine learning tech-
nique that infers a symbolic systemmodel from trajectory data. Com-
paredwith other competingmethods like neural networks, theKoop-
man operator approach canworkwith relatively little training data—
a single trajectory is often enough to produce a useful model. Fur-
ther, the learned model is a high-dimensional linear model. Efficient

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, AndrewMata, and Amir Rahmati

analysis methods for linear systems, such as reachability analysis,
can therefore be used to reason over the learned model.

Koopman operator linearization works by applying a nonlinear
state space transformation defined by an observable function 𝑔(𝑥) :
R𝑛→R𝑞 to the system state 𝑥 , with usually 𝑞>𝑛. This transforms
the system to a higher-dimensional space where the dynamics is
represented by a linear discrete-time system.

𝑔(𝑥 (𝑡𝑖+1))=𝐴𝑔(𝑥 (𝑡𝑖))+𝐵 𝑤 (𝑡𝑖)
𝑦 (𝑡𝑖)=𝐶 𝑔(𝑥 (𝑡𝑖)),

(2)

where𝐴∈R𝑞×𝑞 , 𝐵 ∈R𝑞×𝑚 , and𝐶 ∈R𝑠×𝑞 are the corresponding sys-
temmatrices. The timepoints 𝑡𝑖+1=𝑡𝑖+Δ𝑡 are obtained via discretiza-
tion with time step size Δ𝑡 , where Δ𝑡 is a user-defined parameter.

While, at least for systems with purely continuous dynamics, it is
in theory possible to construct a Koopmanmodel that represents the
dynamics of the real system exactly [26], this is in general compu-
tationally infeasible. Instead, we aim to construct a Koopman model
that instead closely approximates the dynamic behavior of the real
system, which may still be useful for falsification. In Alg. 1, the be-
havior of the real system is captured by a setT of system trajectories
𝜏 , which are obtained by simulating the real system for a specific in-
put. Koopman operator linearization uses this data to determine an
observable function 𝑔(𝑥) as well as systemmatrices𝐴, 𝐵, and𝐶 .

The standard approach for Koopman operator linearization first
selects a set of observables 𝑔(𝑥), and then computes the systemma-
trices𝐴, 𝐵, and𝐶 that yield the best approximation of the trajecto-
ries from the real system [48]. The observable function 𝑔(𝑥) could
be polynomials [43], random Fourier features [12] or neural net-
works [21, 50]. One challenge with Koopman operator linearization
is that themodel’s accuracy depends onmanyparameters such as the
type and number of observables, the matrix rank used in a dynamic
mode decomposition step, or parameters for describing the observ-
ables𝑔(𝑥). We bypass such issues by using the recently-developed
AutoKoopman framework [31], which automates hyper-parameter
tuning to obtain the best-fitting Koopmanmodel.

In Alg. 1, we rely on an iterative process to construct the Koop-
man model: First, a single random trajectory is used to learn the ini-
tial Koopmanmodel. Afterward, we append the set of trajectories
T used to construct the Koopmanmodel in each iteration with the
newly obtained trajectory in case the system is not falsified. Fig. 2
shows a comparison of the trajectory from the real system and the
prediction from the Koopman model for our running example after
one iteration of Alg. 1. Despite the small amount of training data,
the trajectories are qualitatively similar, although some quantitative
differences are apparent.

Often, Koopman operator linearization performs very well for
learning local models that are accurate in a specific region of the
state space but struggles to identify a good global model that is accu-
rate for the overall state space. Based on this observation, we investi-
gate an enhancement that resets the training set T to the empty set
after𝑁reset iterations, where𝑁reset is a user-defined parameter. This
process intuitively focuses Koopman operator linearization to learn
a good local model for the region of the state space that is currently
explored rather than aiming to learn an accurate global model for
the whole state space. For the same reason, we also consider remov-
ing the initial random trajectory from the training set. The benefit of

0 10 20 30 40 50 60 70 80 90

Speed

500

1000

1500

2000

2500

3000

3500

4000

A
n

g
u

la
r

v
el

o
ci

ty

Koopman trajectory Real trajectory

Figure 2: Comparison between the trajectory from the real system and the

prediction from the surrogate Koopmanmodel for the system in Example 1.

this enhancement is analyzed later in Sec. 5.3. In Alg. 1, this is done
in place of appending the new trajectory on line 11.

4.2 Reachability Analysis

Line 5 of Alg. 1 performs reachability analysis on the Koopman lin-
earized model. Although the Koopman dynamics matrix is linear,
the nonlinear initialization using𝑔(𝑥) makes the initial set of states
non-convex.We use a recently-developed reachability algorithm [9],
where polynomial zonotopes [23] represent non-convex sets6:

Definition 3 (Polynomial Zonotope). Given a constant offset
𝑐 ∈R𝑛 , a generatormatrix𝐺 ∈R𝑛×ℎ , andanexponentmatrix𝐸 ∈N𝑝×ℎ≥0 ,
a polynomial zonotope PZ⊂R𝑛 is defined as

PZ :=
{
𝑐+

ℎ∑︁
𝑗=1

(𝑝∏
𝑘=1

𝛼
𝐸 (𝑘,𝑗)
𝑘

)
𝐺 (·, 𝑗)

���� 𝛼𝑘 ∈ [−1,1]},
where the scalars 𝛼𝑘 are called factors,𝐺 (·, 𝑗) denotes the j-th column
of matrix𝐺 , and 𝐸 (𝑘,𝑗) denotes the k-th entry in column j of matrix 𝐸.

The procedure for computing the reachable set is as follows:
First, Taylor model arithmetic [32] is used to map the initial setX0
through the observable function𝑔(𝑥), which yields the initial reach-
able set R𝑔 (0) in the high-dimensional Koopman space. Next, the
resulting Taylor model is converted to a polynomial zonotope [23,
Prop. 4]. Since the dynamics of the Koopmanmodel is represented
by a discrete-time linear system (2), the reachable set R(𝑡) can be
computed with the following propagation rule:

R𝑔 (𝑡𝑖+1)=𝐴 R𝑔 (𝑡𝑖)⊕𝐵W
R(𝑡𝑖)=𝐶 R𝑔 (𝑡𝑖).

The two set operations that are required are linear map 𝐻 S :=
{𝐻 𝑠 | 𝑠 ∈S} with𝐻 ∈R𝑚×𝑛 ,S⊂R𝑛 and Minkowski sumS1⊕S2 :=
{𝑠1+𝑠2 | 𝑠1 ∈S1, 𝑠2 ∈S2} with S1,S2 ⊂R𝑛 , which can be computed
efficiently for polynomial zonotopes [23, Prop. 8 and 9]. To speed-up
subsequent computations,we enclose the polynomial zonotopes that
represent the reachable setsR(𝑡𝑖) by regular zonotopes [23, Prop. 5]:
6In contrast to [23, Def. 1], we do not include 𝑐 into𝐺 , and we omit the independent
generators and the unique identifiers for simplicity

Falsification using Reachability of Surrogate KoopmanModels HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Definition 4 (Zonotope). Given a constant offset 𝑐 ∈R𝑛 and a
generator matrix𝐺 ∈R𝑛×𝑝 , a zonotopeZ⊂R𝑛 is defined as

Z :=
{
𝑐+

𝑝∑︁
𝑘=1

𝐺 (·,𝑘) 𝛼𝑘

���� 𝛼𝑘 ∈ [−1,1]},
where𝐺 (·,𝑘) denotes the k-th column of matrix𝐺 .

One key property of this reachability algorithm is that it pre-
serves dependencies across time [24]. It is not the case that every
point in the reachable setR(𝑡𝑖) at some time 𝑡𝑖 can get to every point
in the reachable set R(𝑡 𝑗) at some later time 𝑡 𝑗 . Dependency preser-
vation can track which pairs of states are actually possible between
the two set of states (or in general, across longer trajectories of the
system). This is done by requiring factors 𝛼𝑘 that are common in the
polynomial zonotope representation of the reachable set at different
points in time to be equal.For proving that a system avoids a fixed
unsafe set, dependency preservation does notmatter. However, with
temporal logic specifications, single parts of the formula at different
times can interact with each other. Dropping dependencies by con-
sidering only, for example, the box bounds of the reachable states
at different points in time, would be a large overapproximation of
the actual possible set of system trajectories, and could lead to more
spurious counterexamples during falsification.

4.3 RobustnessMinimization withMILP

We now describe how to solve the optimization problem in Line 6 of
Alg. 1. One of the advantages of using Koopman operator lineariza-
tion is that the dynamic behavior of the system is linear. This allows
us to formulate the optimization problem as anMILP consisting of
two parts: (1) the encoding of the dynamic behavior of the Koopman
model and (2) the encoding of the robustness of the STL formula.
Dynamic Behavior. Since the reachability algorithm we used to
compute the reachable set in Sec. 4.2 preserves dependencies, the
dynamic behavior of the system defined by (2) is captured by the
zonotopes that represent the reachable setsR(𝑡𝑖) at the discrete time
points 𝑡𝑖 . Further, we computed the reachable set for the set of all
possible initial states 𝑥0 ∈ X0 and the set of all possible input sig-
nals 𝑤 (𝑡) ∈ W, and so the constraint 𝑢 (𝑡) ∈ U on the system in-
put is implicitly represented by the reachable set. To encode the dy-
namic behavior of model, it therefore suffices to add the constraint
𝑦 (𝑡𝑖) ∈R(𝑡𝑖) for all time points 𝑡𝑖 to the optimization problem. Since
reachable sets are represented by zonotopes, we can represent this
set by the constraints

𝑦𝑖 =𝑐+𝐺 [𝛼𝑖,1,...,𝛼𝑖,𝑝]𝑇

−1≤𝛼𝑖,𝑘 ≤ 1, 𝑘 =1,...,𝑝,

where the optimization problem variables are the system outputs
𝑦𝑖 ∈R𝑠 at time 𝑡𝑖 and the factors 𝛼𝑖,𝑘 of the reachable set zonotopes.

It is also possible to encode the dynamic behavior of the Koopman
model directly into the optimization problem. However, using reach-
ability analysis first has two big advantages: (1) without computing
the reachable set, the dynamic constraints would be encoded in the
higher-dimensional observable space. This would increase the num-
ber of decision variables in the MILP problem, reducing solver effi-
ciency; (2) the mapping 𝑔(𝑥) from states to observables is typically
nonlinear. For falsification problems with uncertain initial states
𝑥0 ∈ X0, a direct encoding would result in a nonlinear constraint

Figure 3: MILP computes a trace that violates the specification in the Koopman

linearizedsystem,butthecorrespondingtrajectoryintheoriginalblack-boxsys-

tem enters the invalid region and therefore this is not a valid counterexample.

that is not allowed in anMILP. With reachability analysis, we can
avoid this issue since zonotope enclosures remove the nonlinearities.
These advantages are underlined by a numerical performance com-
parison between reachability analysis and direct encoding in Sec. 5.3.
STL Robustness. To encode the robustness of an STL formula in
MILP formulation, we build off a prior approach [41, Sec. V]. The
quantitative robustness Q(𝜑,𝑦 (𝑡)) of STL, as in Def. 2, is computed
recursively usingmin() andmax() operators. The main concept of
the approach is to translate these operators into anMILP formula-
tion by using additional binary variables and the Big-Mmethod. In
particular, we use the same time-discretization as for reachability
analysis and represent the robustness of an STL formula 𝜑 at time 𝑡𝑖
by a variable 𝑟𝜑

𝑖
in the optimization problem. If the STL formula rep-

resents a single predicate 𝑝 := 𝑓 (𝑦 (𝑡))>0, the robustness is accord-
ing to Def. 2 simply given by the value of the function that defines
the predicate 𝑟𝜑

𝑖
= 𝑓 (𝑦𝑖). The MILP encoding requires the predicates

to be linear or affine 7

The robustness of 𝜑 =𝜑1∧𝜑2 according to Def. 2 is Q(𝜑,𝑦 (𝑡)) =
min(Q(𝜑1,𝑦 (𝑡)),Q(𝜑2,𝑦 (𝑡))). It can encoded by adding the follow-
ing MILP constraints for all time steps 𝑖:

𝑟
𝜑1
𝑖
−(1−𝑧𝑖)𝑀 ≤𝑟𝜑𝑖 ≤𝑟

𝜑1
𝑖
+(1−𝑧𝑖)𝑀

𝑟
𝜑2
𝑖
−𝑧𝑖𝑀 ≤𝑟𝜑𝑖 ≤𝑟

𝜑2
𝑖
+𝑧𝑖𝑀

𝑟
𝜑

𝑖
≤𝑟𝜑1

𝑖
, 𝑟

𝜑

𝑖
≤𝑟𝜑2

𝑖
, 𝑧𝑖 ∈ {0,1},

where we introduce an additional binary variable 𝑧𝑖 , and𝑀 ∈R≥0
is a sufficiently large number. Here, the combination of the Big-M
method and the binary variable 𝑧𝑖 ensures that only one of the first
two constraints is active, and the third constraint forces it to be the

7Alternatively, predicates can be any convex or even nonlinear function for which
corresponding solvers can be leveraged.

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, AndrewMata, and Amir Rahmati

Algorithm 2: Specification Offset Strategy
Data: STL formula 𝜑 , real system trajectory 𝜏
Result:Modified STL formula 𝜑offset

1 A←ExtractAtomicPredicates(𝜑)
2 𝜑offset←RecursiveOffset(𝜑,𝜏,A)

3 Function RecursiveOffset(𝜑,𝜏,A):
4 𝑄←Q(𝜑,𝜏) // get current robustness

5 foreach 𝑝 𝑗 ∈A do

6 foreach 𝑠 ∈ {−1,1} do
7 𝑝∗

𝑗
←𝑝 𝑗 +𝑠 ·𝑄

8 𝜑∗←𝜑 [𝑝∗
𝑗
→𝑝 𝑗] // replace 𝑝 𝑗 with 𝑝∗

𝑗
in 𝜑

9 𝑄∗←Q(𝜑∗,𝜏) // get updated robustness

10 if 𝑄∗<𝑄 then

11 if 𝑄∗ ≤ 0 then
12 return 𝜑∗

13 else

14 𝜑∗←RecursiveOffset(𝜑∗,𝜏,A)
15 end

16 end

17 end

18 end

19 end

one corresponding to the minimum. In a similar fashion, one can
encode disjunctions as well as all discrete-time temporal operators.

Fig. 3 shows the result of the optimization problem for our run-
ning example after one iteration of Alg. 1. TheMILP solver computes
the lowest robustness Koopman trajectory inside the reachable set.
The returned Koopman trajectory has negative robustness, indicat-
ing that it falsifies the system. However, the corresponding trajec-
tory of the original black-box system violates the first requirement
of the falsification problem as the angular velocity exceeds 3000. In
order to try to reduce the error in the model approximation, the real
trajectory is added to the set of simulation data that is used to retrain
the Koopmanmodel, and the process is repeated.

4.4 Specification Offset

In Figure 3, approximation error in the surrogatemodel caused a spu-
rious counterexample. In this section, we consider a second way to
prevent spurious counterexamples (other than retraining) where we
use the observedmodel error to adjust the optimization target. In the
figure, the real trajectoryhas bothhigher angular velocity andhigher
speed than the Koopman trajectory. A modified optimization tar-
get could try to keep the angular velocity lower to avoid the invalid
region, even if it means the speed cannot go as far into the unsafe
region. We outline this process below, calling it specification offset.

STL formulaeareoftencomposedofmultiple sub-formulae,which
may exhibit varying levels of scale and complexity. For instance,
in our running example the specification is 𝜑 =^[0,30]𝜔 ≥ 3000∨
□[0,4]𝑣 <35 . There exists amismatch in values for the angular veloc-
ity of the engine𝜔 and the speed of the vehicle 𝑣 , where the former
is typically on the order of thousands and the latter is on the order

Figure 4: By applying the specification offset strategy described in Sec. 4.4, the

witness inputs for the lowest robustness trajectory of the Koopman linearized

system violate the original STL specification on the original black-box system.

of tens. This mismatch can be linked to the scale problem, a com-
monly recognized issue in falsification [51] where one sub-formula
masks the effect of another. In contrast to numerical falsification,
the scale problem in our approach mainly arises due to approxima-
tion error in the surrogate model. In Fig. 3, for example, the absolute
error of the angular velocity in the learned Koopmanmodel is sig-
nificantly larger than the absolute error of speed. This mismatch in
error, driven by the scale difference, results in the real trajectory fail-
ing to falsify the system, as𝜔 does not stay below 3000.

To counteract the error in model learning and the effect of scale,
we propose an offset technique, presented in Alg. 2. This enhance-
ment modifies the STL formula 𝜑 used in the MILP optimization
step, and can be done after each iteration of the main falsification
algorithm in Alg. 1 (after line 11). In particular, if the trajectory of
the real system fails to falsify the specification and 𝜑 is composed
of more than one atomic predicate 𝑝 , we modify𝜑 by applying the
offset strategy described inAlg. 2. This algorithm identifies andmod-
ifies the predicate(s) responsible for the failure in falsification. In the
main loop of the algorithm (Line 5-19), each atomic predicate 𝑝 is
offset by the current robustness value of 𝜑 (Line 7), in both the pos-
itive and negative direction, until a responsible predicate 𝑝 is found,
which is the case if the value for the robustness decreases (Line 10).
The formula is then updated with the offset predicate (Line 8), and
the process is repeated until all responsible predicates are identified,
which is the case if the robustness reaches zero (Line 11). The mod-
ified STL formula that is returned by Alg. 2 is then used to bias the
optimizer in Alg. 1 when searching for a counterexample. This strat-
egy modifies the constraints imposed by 𝜑 , guiding the system to-
wards a counterexample while considering the inaccuracies in the
learned model and the challenges posed by scale issues.

Falsification using Reachability of Surrogate KoopmanModels HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Fig. 4 shows the effect of the offset strategy on the running exam-
ple. Previously in Fig. 3, after the first iteration of Alg. 1, the robust-
ness of the trajectory from the real system is𝑄 =4255−3000=1255,
and thepredicate𝜔 ≥ 3000 is responsible for the failureof falsification.
Alg. 2 returns the modified STL formula 𝜑offset=□[0,30]𝜔 ≥ (3000−
𝑄)∨□[0,4]𝑣 <35=□[0,30]𝜔 ≥1745∨□[0,4]𝑣 <35. As before, the real
trajectory still has both higher angular velocity and higher speed
than the Koopman trajectory, but the stricter bounds compensate for
the large approximation error of the Koopmanmodel for the angular
velocity𝜔 . Consequently, although the Koopman trajectory of min-
imum robustness does not falsify the modified spec 𝜑offset, the cor-
responding trajectory of the real system falsifies the original spec 𝜑 .

5 Numerical Evaluation

We implemented our approach 8 in MATLAB/Simulink, using Au-
toKoopman [31] to learn the Koopman surrogate model, CORA [4]
for set-based computing and reachability analysis, Breach [15] for ef-
ficient computation of the quantitative robustness of an STL formula,
BLuSTL [16] to encode STL robustness in MILP formulation, and
Gurobi9 for solving the MILP optimization problems. All presented
computations were done on a 3.4GHz AMD Ryzen 9 5950X 16-core
processor with 64GBmemory. Moreover, for AutoKoopman we use
randomFourier features as observables𝑔(𝑥), reset the training set af-
ter𝑁reset=5 trajectories, and apply grid-search for hyper-parameter
optimization, where we use𝑞=20 as an upper bound for the number
of observables. A detailed analysis that justifies our choice for these
parameters is provided in Sec. 5.3. We use 𝑁max=5000 as the limit
on the number of iterations of Algorithm 1, although most systems
are falsified in fewer than 10 simulations.

5.1 ARCHCompetition Benchmarks

We compare our approach to other state-of-the-art falsification tools
using the complete set of benchmarks and participating tools from
the 2022ARCH competition10 [18]. TheARCH competition featured
six systems: theAutomatic Transmission (AT) system that we used
for our running example, aNeural-NetworkController (NN) that aims
to keep amagnet which hovers in an electromagnetic field at a given
reference position, a Chasing Cars (CC) benchmark that considers a
platoon of 5 vehicles, an Aircraft Ground Collision Avoidance System
(F16) that examines the auto-pilot of an F16 fighter jet, a Fuel Control
ofanAutomotivePowertrain (AFC)model, andaSteamCondenserwith
Recurrent Neural Network Controller (SC). The parameters for the
systems are summarized in Table 1 with further details available in
the competition report [18, Sec. 2.2]. Each system can have multiple
temporal logic specifications with different constraints [18, Tab. 1].

The ARCH competition features two problem instances. For the
first instance, arbitrary input signals𝑤 (𝑡) are allowed and partici-
pants can freely choose the number of control points and interpola-
tionmethodthatworksbest for their tool.Theparametersweused for
ourapproacharedocumented inTable1. For thesecond instance type,
the input signals parameters are given on apermodel basis. The chas-
ing carsmodel, for example, requires that the input is a piecewise con-
stant signalwith20segments.Wegenerallyuse thenumberofcontrol

8https://github.com/Abdu-Hekal/KoopmanFalsification
9https://www.gurobi.com/
10Note that the report for the 2023 edition of ARCHCOMP came out a few weeks before
the submission deadline for this work.

Table 1: Properties for the models from the ARCH competition, consisting

of the number of inputs𝑚, number of outputs 𝑠 , number of uncertain initial

states𝑛, and time horizon𝑇 . Moreover, we report the time step size Δ𝑡 that de-
fines the number of control points as well as the interpolationmethod that we

used to construct𝑤 (𝑡) for the problem instance with arbitrary input signals.

Model 𝑚 𝑠 𝑛 𝑇 Δ𝑡 Interpolation

AT 2 3 - 30 1 piecewise constant
NN 1 1 - 40 3.33 piecewise constant
CC 2 5 - 100 10 polynomial
F16 - 16 3 15 0.1 piecewise constant
AFC 2 1 - 50 1 piecewise constant
SC 1 1 - 15 0.1 polyonmial

points to determine the time step sizeΔ𝑡 . Then, we use the same step
size for the time step inKoopman operator linearization, reachability
analysis and the encoding of the STL formula in the MILP. The only
exception is theAFC benchmark, where a time step size ofΔ𝑡 =5was
found to be too coarse for effective analysis, soweusedΔ𝑡 =1 instead.

Since many falsification tools include some randomness and are
therefore non-deterministic, the results reported in the ARCH com-
petition are averaged over 10 falsification attempts. The main met-
rics used to evaluate the performance of the tools are the falsifica-
tion rate FR, which specifies for howmany of the 10 attempts the
tool succeeded in falsifying the specification, and the average and
median number of simulations, 𝑆 and 𝑆 , of the real system that
a tool needs to falsify the specification.

To ensure a meaningful comparison, we independently validate
the results reported by other tools.We use the input signals reported
by each tool 11 to run simulations of the models and then use Breach
to compute the corresponding robustness. In our analysis, we dis-
covered that some of the trajectories submitted for the ARCH com-
petition violate input constraints or do not strictly falsify the spec-
ification (𝑄 ≮ 0). For this reason, we specify for the falsification rate
both the number of trajectories we could successfully validate as
well as the number reported in the ARCH competition. Details of
the issues we discovered are provided in Appendix A.

The results for instance 1with arbitrary input signals and instance
2 with constrained input signals are shown in Tables 2 and 3, respec-
tively. We omitted the results for the tool FalCAuN from the tables
for space reasons, since this tool is outperformed on all benchmarks.
As visible in Table 2, for the problem instance with arbitrary inputs
our approach achieves the lowest number of average simulations for
16 of the 19 benchmarks. For benchmark SC, no other tool reports a
falsifying trace, and in CC4 andNN𝛽=0.04, only our algorithm consis-
tently falsifies themodel across all 10 runs. For several specifications
of the automatic transmission benchmarks (AT52,AT53,AT54), a sin-
gle simulation proves sufficient to identify a falsifying trace, which
implies that the random simulation generated to learn the model al-
ready falsifies the requirement. The same behavior can be observed
for the toolsARIsTEOand falsify. For benchmarksAT6a,AT6b,AT6c,
and AT6abc, our approach demonstrates a significant performance
improvementover the state of the art. In fact, for benchmarkAT6bwe
require on average 150 fewer simulations than the best-performing
tool, which corresponds to 2343% improvement in performance.

11https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2022/FALS

https://github.com/Abdu-Hekal/KoopmanFalsification
https://www.gurobi.com/

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, AndrewMata, and Amir Rahmati

Table 2: Comparison of the performance of different falsification tools on the benchmarks from the ARCH competition (instance 1), where the results are averaged

over 10 executions. The evaluationmetrics are themean𝑆 andmedian𝑆 number of simulations, simulation timepercentR= Simulation Time

Total Time
∗100(%) , aswell as the falsi-

fication rate FR reported in the format
V/A, where V is number of validated falsification results andA is the number of falsifications reported in theARCHcompetition.

Bench. Our Approach Uniform ARIsTEO falsify FalStar ForeSee Ψ−TaLiRo

FR 𝑆 𝑆 R FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 R

AT1 10/− 8.8 8.0 55.8 - - - - - - - - −/10 26.2 18.5 10/10 338 348 10/10 106 106 72.7
AT2 10/− 2.1 2.0 60.6 9/10 7.6 5.0 10/10 5.4 2 - - - −/10 3.5 2 10/10 108 33.5 10/10 15.5 12.5 57.5
AT51 10/− 7.9 7.0 31.8 1/1 923 923 - - - 0/10 4.5 3.0 −/10 65.2 22 10/10 19.3 10.5 1/1 22.0 22 92.0
AT52 10/− 1.1 1.0 64.1 10/10 4.1 2.0 10/10 1.7 1.5 0/10 1.1 1.0 0/10 253 241 10/10 65.1 36.5 10/10 3.2 2.5 61.7
AT53 10/− 1.0 1.0 81.1 10/10 18.6 15.0 10/10 12.8 8.5 0/10 1.2 1.0 −/10 99.6 81.5 10/10 4.0 2.0 10/10 28.0 21.0 60.2
AT54 10/− 1.0 1.0 81.2 4/4 1121 1056 - - - 0/10 1.4 1.0 −/10 86.3 52.5 10/− 24.8 23.5 7/7 715 554 90.6
AT6a 10/− 9.1 10.0 45.4 10/10 74.4 41.5 10/10 93.4 70.0 - - - −/10 74.4 79.0 10/10 128 136 10/10 76.6 89.0 58.1
AT6b 10/− 5.0 5.0 46.1 10/10 251 189 4/4 112 127 2/3 166 186 −/10 92.0 81.0 10/10 228 211 7/7 426 224 58.2
AT6c 10/− 6.7 6.0 44.2 10/10 185 86.0 9/9 124 112 - - - 3/10 620 953 10/10 157 128 9/9 328 112 58.3
AT6abc 10/− 5.9 5.0 36.5 10/10 58.8 33.5 10/10 73.4 30.5 - - - −/10 41.0 602 - - - 10/10 34.2 29.5 37.0

NN 10/− 1.9 2.0 43.5 10/10 38.6 27.5 0/1 299 299 7/9 19.7 13.0 10/10 186 126 7/10 51.3 46.0 10/10 36.4 35.5 84.6
NN𝛽 =0.04 10/− 53.9 30.5 27.5 - - - - - - 0/5 72.4 74.0 - - - - - - - - - -
NNx - - - - - - - - - - - - - 0/5 787.0 813.0 0/10 1.1 1.0 - - - -

CC1 10/− 6.8 6.0 43.4 10/10 10.4 9.5 −/10 24.8 17.5 10/10 42.0 28.5 −/10 2.9 1.5 - - - 10/10 13.1 8.5 71.5
CC2 10/− 3.5 2.5 48.0 10/10 15.4 15.0 10/10 14.6 9.0 4/4 43.3 10.0 −/10 3.8 1.5 - - - 10/10 16.4 11.0 65.5
CC3 10/− 7.1 4.5 31.3 10/10 77.9 54.5 10/10 59.5 35.0 10/10 35.0 33.0 −/10 6.2 4.5 - - - 10/10 21.5 15.0 71.8
CC4 10/− 198 139 39.5 - - - - - - - - - 2/2 1257 1257 - - - 1/1 1253 1253 93.6
CC5 10/− 27.7 21.5 28.8 10/10 28.5 14.5 10/10 18.8 18.0 2/3 5.7 5.0 8/10 60.5 32.0 - - - 10/10 47.3 39.0 84.8
CCx 10/− 110 63.5 35.3 9/9 668 469 3/3 134 74.0 - - - 9/9 962 1000 - - - 10/10 211 70.0 20.8

F16 -

SC 10/− 57.8 38.5 6.2 - - - - - - - - - - - - - - - - - -

Table 3: Comparison of the performance of different falsification tools on the benchmarks from the ARCH competition (instance 2), where the results are averaged

over 10 executions. The evaluationmetrics are themean𝑆 andmedian𝑆 number of simulations, simulation timepercentR= Simulation Time

Total Time
∗100(%) , aswell as the falsi-

fication rate FR reported in the format
V/A, where V is number of validated falsification results andA is the number of falsifications reported in theARCHcompetition.

Bench. Our Approach Uniform ARIsTEO falsify FalStar ForeSee Ψ−TaLiRo

FR 𝑆 𝑆 R FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 FR 𝑆 𝑆 R

AT1 10/− 4.9 4.5 57.0 - - - - - - - - - - - - - - 10/10 105 105 86.8
AT2 10/− 2.5 2.5 63.0 10/10 18.8 13.5 10/10 12.9 8.0 - - - - - - - - - 10/10 11.6 11.0 50.3
AT51 10/− 24.1 27.5 48.7 9/10 20.5 16.5 10/10 19.0 10.0 2/10 15.5 15.5 - - - - - - 10/10 13.7 8.5 69.3
AT52 10/− 6.0 4.0 46.2 10/10 74.1 65.0 10/10 74.7 46.0 2/10 4.7 5.0 - - - - - - 10/10 79.1 95.0 92.9
AT53 10/− 1.8 1.0 57.3 10/10 1.5 1.0 10/10 1.4 1.0 3/10 2.4 1.5 - - - - - - 10/10 2.7 2.0 57.1
AT54 10/− 85.0 62.0 46.0 10/10 47.9 42.0 10/10 44.0 40.0 6/10 33.4 29.0 - - - - - - 10/10 37.7 32.0 79.6
AT6a 10/− 27.6 15.5 48.3 10/10 157 138 7/7 65.1 62.0 - - - - - - - - - 9/9 255 226 61.7
AT6b 10/− 14.1 7.0 48.5 10/10 472 588 5/5 91.2 74.0 5/9 107 76.0 - - - - - - 9/9 580 522 49.4
AT6c 10/− 10.5 10.0 49.4 10/10 327 176 7/7 175 141 - - - - - - - - - 8/8 362 168 54.7
AT6abc 10/− 15.8 12.5 39.0 10/10 149 126 9/9 84.1 81.0 - - - - - - - - - 10/10 241 74.0 7.8

AFC27 10/− 9.3 5.0 30.8 - - - 8/9 21.9 25.0 4/10 1.9 1.0 - - - - - - 0/10 113 110 97.8
AFC29 10/− 2.2 2.0 72.3 4/10 25.1 19.0 10/10 3.4 3.5 5/10 1.0 1.0 - - - - - - 9/10 19.6 19.0 100
AFC33 - - - - - - - - - - 0/10 1.0 1.0 - - - - - - - - - -

NN 10/− 5.1 2.0 38.0 10/10 277 159 1/10 117 82.5 13/16 44.4 1.0 - - - 5/10 74.9 88.5 10/10 156 100 88.8
NN𝛽 =0.04 10/− 446 477 32.5 - - - - - - 10/10 1.0 1.0 - - - - - - - - - -
NNx 10/− 155 131 17.6 10/10 713 488 - - - - - - - - - 0/10 1.0 1.0 10/10 46.8 48.0 37.2

CC1 10/− 3.7 3.0 49.5 10/10 16.4 9.5 10/10 9.1 8.0 10/10 19.9 16.5 - - - 10/10 27.6 28.5 10/10 10.8 8.0 73.9
CC2 10/− 3.9 3.5 43.3 10/10 12.4 13.0 10/10 10.8 9.0 9/9 8.4 7.0 - - - 1/1 148 148 10/10 9.6 7.0 68.3
CC3 10/− 4.7 4.0 26.1 10/10 19.6 21.0 10/10 12.8 13.5 10/10 8.2 5.0 - - - 9/10 16.4 10.0 10/10 11.7 8.0 70.5
CC4 10/− 888 480 27.7 - - - - - - 0/1 15.5 15.0 - - - 9/10 586 575 3/3 1608 1580 96.9
CC5 10/− 18.2 15.0 9.2 10/10 37.4 22.0 10/10 21.1 11.5 4/4 16.4 16.0 - - - 9/10 95.2 30.0 10/10 28.3 27.0 75.3
CCx 7/− 3024 3492 29.9 7/7 614 291 3/3 97.0 103 - - - - - - - - - 10/10 241 74.0 35.4

SC -

Falsification using Reachability of Surrogate KoopmanModels HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Another aspect of the results that is not apparent from the tables
is that other tools often havemanymore hyper-parameters that have
been tuned by experts—the tool authors—such as a varying number
of control points for different specifications of the same model. Our
approach uses a consistent number of control points for all falsifi-
cation problems of each model.

Our approach is outperformed on three benchmarks (CC1, CC3,
CC5), which all belong to the chasing cars model. This is a difficult,
highly nonlinear model, with a coarse time step size of Δ𝑡 =10. De-
spite these challenges, our approach still consistently finds a falsify-
ing trace for each run for all three benchmarks and outperforms the
majority of tools. In particular, for benchmark CC1, only FalStar
records a lower average number of simulations (2.9 compared to 5.5
for our approach). Similarly, for CC3, FalStar requires 6.2 simula-
tions on average, while our approach requires 7.1 simulations. For
CC5, only ARIsTEO requires fewer simulations on average to find
a falsifying trace. There exist two benchmarks, NNx and F16, where
no tool (including our work) finds a valid falsifying trace. Note that
FalStar and ForeSee report falsifying instances for NNx in the
ARCH competition [18], however we discovered that the reported
instances for each tool violate the input requirements for the bench-
mark (see Appendix A for more details).

For instance 2 with constrained input signals, we outperform
state-of-the-art tools for 15 out of 21 benchmarks as shown in Ta-
ble 3. The slight decrease in performance of our approachwe believe
is caused by the additional constraints. The restrictions on the in-
puts narrow the solution space, which leaves less room for error in
the learned surrogate model. At the same time, the restricted input
format results in a smaller search space, which helps numerical op-
timization falsification approaches such as Ψ−TaLiRo.

To select the next sample, our approach involves learning a sur-
rogate model (with automated hyper-parameter tuning), perform-
ing reachability analysis and then solving an MILP. While this helps
our approach make better decisions for complex specifications, a
legitimate concern could be that this process may take too long
and become a bottleneck. We analyze this by measuring the per-
centage of overall computation time spent running simulations,
R= Simulation Time

Total Time ∗100(%). While the computation time for our ap-
proach is apparent in the tables—on average 44.8% of the compu-
tation time is spent running simulations—it does not preclude our
approach from being applied. In some cases, such as the AT2 bench-
mark, we even record both a better percent simulation time and a
lower number of expected simulations. Further, our implementation
is a prototype, with likely room for optimization.

5.2 Aircraft Model

TheARCHcompetition introducesadiverse set of challengingbench-
marks with various behaviors and requirements. However, with the
exception of the F16 model, all benchmarks only consider falsifica-
tion via time-varying input signals and do not contain uncertain ini-
tial conditions𝑥0 ∈X0. Therefore, to evaluate the performance of our
approach for falsification tasks with both uncertain input signals
and uncertain initial states, we now consider an additional aircraft
model [37, Example 3.2].

The state 𝑥 (𝑡)= [𝑣,𝜙,𝑎]𝑇 of the aircraft, which is identical to the
system output𝑦 (𝑡)=𝑥 (𝑡), consists of the velocity 𝑣 , the flight path
angle 𝜙 , and the altitude 𝑎. The input𝑤 (𝑡) = [𝑓 ,\]𝑇 to the system

Table 4: Falsification results for the aircraft model averaged over 10 executions,

where the evaluation metrics are the falsification rate FR, the mean 𝑆 and

median 𝑆 number of simulations, and the computation time 𝑡comp in seconds.

Bench. Our Approach UniformRandom Simulated Annealing

FR 𝑆 𝑆 𝑡comp FR 𝑆 𝑆 𝑡comp FR 𝑆 𝑆 𝑡comp

𝜑1 10 26.7 12.5 24.7 8 1866 2036 83.7 10 859 630 39.9
𝜑2 10 2.0 2.0 0.54 10 19.0 13.5 0.04 10 64.0 25.5 0.15

consists of the thrust 𝑓 and the angle of attack \ . The initial state 𝑥0
is uncertain within the setX0= [200,260]×[−10,10]×[120,150], and
the input signal𝑤 (𝑡) is uncertainwithin the setW= [34386,53973]×
[0,16]. For falsification, the time horizon is𝑇 =4𝑠 . The benchmark
considers the following two STL specifications:

𝜑1=^[1,1.5]𝑣 ∉ [250,260]∨□[3,4]𝑣 ∉ [230,240]
𝜑2=□(𝑎>0)

We compare our approach to S-TaLiRo [6], which, unlike many
other tools, supports the falsification of systems with uncertainties
in the initial set. S-TaLiRo employs optimization-based falsification
and supports several different algorithms. For our comparison, we
consider the two algorithms uniform random exploration and sim-
ulated annealing. Uniform random exploration serves as an effective
metric for assessing the complexity of a benchmark since it requires
few simulations for properties that are easier to falsify. On the other
hand, simulated annealing represents a more sophisticated falsifica-
tion approach and is the default optimization algorithm for S-TaLiRo.
For a fair comparison, we consider piecewise constant input signals
with 10 segments for our approach as well as for S-TaLiRo, which
corresponds to a time step size of Δ𝑡 =0.4𝑠 .

As with the ARCH competition, we report the results averaged
over 10 falsification attempts, which are summarized in Table 4. For
the relatively complex STL specification 𝜑1, our approach signifi-
cantly outperforms both falsification algorithms from S-TaLiRo in
all evaluation metrics. For the simpler STL specification 𝜑2, our ap-
proach on average requires the fewest number of simulations.

Despite having fewer simulations, our method’s total computa-
tion time for𝜑2 is larger two algorithms in S-TaLiRo, due to the extra
computation needed to select the next sample. In this case, however,
the falsification time is still small—0.54 seconds for our approach.

5.3 Influence of Algorithm Parameters

We conclude our numerical evaluation by analyzing the influence
certain hyper-parameters have on the performance of our falsifi-
cation algorithm, for which we consider the benchmarks from the
ARCH competition described in Sec. 5.1.

First, we examine the influence of the number of observables 𝑞
for the Koopman model on the AT1 and CC1 benchmarks. In the-
ory, a larger number of observables should result in a more accurate
Koopman model, and therefore improve the performance of the fal-
sification algorithm. In practice, however, we see on the left side of
Fig. 5 that a larger number of observables only slightly reduces the
average number of simulations required to falsify the system. At
the same time, as shown on the right side of Fig. 5, a larger number
of observables decreases the percent time spent on simulations R,
which corresponds to an increase in the overall computation time.
In summary, this means that a rather low number of observables is

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, AndrewMata, and Amir Rahmati

10 20 30 40 50
0
5
10
15
20
25
30
35
40

No. of Observables

𝑆

10 20 30 40 50
0

10

20

30

40

50

60

70

No. of Observables

R

Reachability Analysis: AT1 CC1
Direct Encoding: AT1 CC1

Figure 5: Mean number of simulations 𝑆 (left) and non-simulation time ratio R

(right) for the AT1 and CC1 benchmarks from the ARCH competition averaged

over 10 executions, where we compare using reachability analysis to directly

encoding the dynamics into the optimization problem.

sufficient for our falsification algorithm, and justifies the choice of
𝑞=20 as an upper bound for the search range in AutoKoopman.

As we explained in Sec. 4.3, one of the main motivations for using
reachability analysis rather than directly encoding the dynamics of
the Koopmanmodel into the optimization problem is the reduced
computation time. Experimental evidence for this claim is provided
on the right side of Fig. 5, where using reachability analysis leads to
a larger percent of simulation time R compared to direct encoding,
whichcorresponds toa smaller total computation time.While there is
a huge difference in computation time for the AT1 benchmark, espe-
cially when the number of observables is large, the difference for the
CC1 benchmark is much smaller. This can be attributed to the small
number of control points used for the CC1 benchmark, which results
in a small amount of variables for the MILP optimization problem,
even for a large number of observables. Indeed, for the CC1 bench-
mark with such settings, the computational cost of reachability anal-
ysis can slightly surpass the cost of direct encoding. Nevertheless,
this computational gap lessens for a larger number of observables.

Finally, we examine the effect of the hyper-parameter 𝑁reset,
which specifies after how many trajectories the training set used
to learn the Koopman model is reset to the empty set. The effect
of 𝑁reset on the average number of simulations is shown in Fig. 6
for several different benchmarks. We can observe that resetting the
training set after 𝑁reset=2 trajectories leads to a higher number of
simulations needed for falsification. This suggests that the data in
this case is insufficient to correctly learn the dynamics of the black-
box model. On the other extreme, a value of 𝑁reset=20 shows better
overall performance, but suffers from extreme outliers. For example,
in one falsification run for theAT1 benchmark, asmany as 47 simula-
tions were required to falsify the system, which is much higher than
the average number. These outcomes suggest that the best value for
𝑁reset is located somewhere between the two extremes, which jus-
tifies us to use 𝑁reset=5 as the default in our approach.

We also investigated the change in the average number of sim-
ulations and percentage of simulation time R for the ARCHCOMP
benchmarks, for different choices of time step sizeΔ𝑡 and different al-
gorithmenhancements.This extra analysispresented inAppendixB.

0 5 10 15 20 25 30 35 40 45 50

CC3

CC2

CC1

AT6abc

AT6c

AT6b

AT6a

AT2

AT1

𝑆

𝑁reset
2
3
5
10
20

Figure 6: Average number of simulations 𝑆 required to falsify the system for

different values of training set resets𝑁reset for Koopmanmodel learning eval-

uated on different benchmarks from the ARCH competition.

6 Conclusion

In this paper we developed a new approach for the falsification of
black-box cyber-physical systems. While most existing falsification
algorithms apply numerical optimization to find a falsifying trace,
our approach instead uses machine learning via Koopman oper-
ator linearization to create a symbolic model approximation. We
then apply formal verification approaches on the inferred model—
reachability analysis andMILP specification encoding—in order to
find the start point and input signal thatminimizes robustness. Since
the formal reasoning is done on amodel approximation, this does not
always falsify the original black-box system.We presented strate-
gies to improve the local accuracy of the learned model, as well as a
specification offset approach to compensate for relevantmodel error.
The developed method is highly effective. We outperform all partici-
pating tools on 16 out of 19 benchmarks from the ARCH falsification
competition.

Our method incorporates earlier work from both falsification and
verification methods. From falsification, we leverage quantitative
semantics of STL and propose strategies to deal with the scale prob-
lem. From verification methods, we use polynomial zonotopes to
represent non-convex sets arising from the nonlinear Koopman ob-
servable functions and perform dependency-preserving reachability
analysis. While falsification and verification have traditionally been
disperse areas, the presented approach would not have been possi-
ble without building upon research results from both.

Acknowledgements.This material is based upon work supported by the
Air Force Office of Scientific Research and the Office of Naval Research under
award numbers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-23-1-0066
and N00014-22-1-2156, and the National Science Foundation under Award
No. 2237229. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Air Force or the United States Navy.

Falsification using Reachability of Surrogate KoopmanModels HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

References

[1] H. Abbas and G. Fainekos. 2012. Convergence Proofs for Simulated Annealing
Falsification of Safety Properties. In Proc. of the Annual Allerton Conference on
Communication, Control, and Computing. 1594–1601.

[2] H. Abbas, A.Winn, G. Fainekos, and A. A. Julius. 2014. Functional Gradient De-
scent Method for Metric Temporal Logic Specifications. In Proc. of the American
Control Conference. 2312–2317.

[3] A. Aerts, B. T. Minh, M. R. Mousavi, and M. A. Reniers. 2018. Temporal Logic
Falsification of Cyber-Physical Systems: An Input-Signal-Space Optimization
Approach. In Proc. of the International Conference on Software Testing, Verification
and ValidationWorkshops. 214–223.

[4] M. Althoff. 2015. An Introduction to CORA 2015. In Proc. of the International
Workshop on Applied Verification for Continuous and Hybrid Systems. 120–151.

[5] M. Althoff, G. Frehse, and A. Girard. 2021. Set Propagation Techniques for Reach-
ability Analysis. Annual Review of Control, Robotics, and Autonomous Systems
4 (2021), 369–395.

[6] Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. 2011. S-TaLiRo:
A Tool for Temporal Logic Falsification for Hybrid Systems. In Proc. of the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. 254–257.

[7] Y. S. R. Annapureddy and G. Fainekos. 2010. Ant Colonies for Temporal Logic Fal-
sification of Hybrid Systems. In Proc. of the Annual Conference on IEEE Industrial
Electronics Society. 91–96.

[8] S. Bak and P. S. Duggirala. 2017. Simulation-Equivalent Reachability of Large
Linear Systems with Inputs. In Proc. of the International Conference on Computer
Aided Verification. 401–420.

[9] S. Bak and et al. 2022. Reachability of Koopman Linearized Systems Using Ran-
dom Fourier Feature Observables and Polynomial Zonotope Refinement. In Proc.
of the International Conference on Computer Aided Verification. 490–510.

[10] S. Bogomolov and et al. 2019. Falsification of Hybrid Systems Using Symbolic
Reachability and Trajectory Splicing. In Proc. of the International Conference on
Hybrid Systems: Computation and Control. Article No. 1.

[11] Xin Chen and Sriram Sankaranarayanan. 2022. Reachability Analysis for Cyber-
Physical Systems: Are We There Yet?. In NASA Formal Methods Symposium.
Springer, 109–130.

[12] A. M. DeGennaro and N. M. Urban. 2019. Scalable Extended Dynamic Mode De-
composition Using Random Kernel Approximation. SIAM Journal on Scientific
Computing 41, 3 (2019), 1482–1499.

[13] J. Deshmukh and et al. 2017. Testing Cyber-Physical Systems Through Bayesian
Optimization. ACM Transactions on Embedded Computing Systems 16, 5s (2017).
Article No. 170.

[14] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler. 2015. Stochastic Local Search for
Falsification of Hybrid Systems. In Proc. of International Symposium on Automated
Technology for Verification and Analysis. 500–517.

[15] A. Donzé. 2010. Breach, A Toolbox for Verification and Parameter Synthesis
of Hybrid Systems. In Proc. of the International Conference on Computer Aided
Verification. 167–170.

[16] A. Donzé, V. Raman, G. Frehse, andM. Althoff. 2015. BluSTL: Controller Synthesis
from Signal Temporal Logic Specifications. Proc. of the International Workshop
on Applied Verification for Continuous and Hybrid Systems (2015), 160–168.

[17] J. L. Eddeland and et al. 2020. Enhancing Temporal Logic Falsification with Spec-
ification Transformation and Valued Booleans. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 12 (2020), 5247–5260.

[18] G. Ernst and et al. 2022. ARCH-COMP 2022 Category Report: Falsification with
Unbounded Resources. In Proc. of the International Workshop on Applied Verifi-
cation for Continuous and Hybrid Systems. 204–221.

[19] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo. 2019. Fast Falsification of Hy-
brid Systems Using Probabilistically Adaptive Input. In Proc. of the International
Conference on Quantitative Evaluation of Systems. 165–181.

[20] G. Fainekos and G. Pappas. 2009. Robustness of Temporal Logic Specifications for
Continuous-Time Signals. Theoretical Computer Science 410, 42 (2009), 4262–4291.

[21] Y. Han and et al. 2020. Deep Learning of Koopman Representation for Control.
In Proc. of the International Conference on Decision and Control. 1890–1895.

[22] B. Hoxha, H. Abbas, and G. Fainekos. 2015. Benchmarks for Temporal Logic Re-
quirements for Automotive Systems. In Proc. of the International Workshop on
Applied Verification for Continuous and Hybrid Systems. 25–30.

[23] N. Kochdumper and M. Althoff. 2021. Sparse Polynomial Zonotopes: A Novel
Set Representation for Reachability Analysis. IEEE Trans. Automat. Control 66,
9 (2021), 4043–4058.

[24] N. Kochdumper, B. Schürmann, and M. Althoff. 2020. Utilizing Dependencies
to Obtain Subsets of Reachable Sets. In Proc. of the International Conference on
Hybrid Systems: Computation and Control. Article No. 1.

[25] K. Komatsu and H. Takata. 2008. Nonlinear Feedback Control of Stabilization
Problem via Formal Linearization Using Taylor Expansion. In Proc. of the Inter-
national Symposium on Information Theory and Its Applications. 1–5.

[26] B. O. Koopman. 1931. Hamiltonian Systems and Transformation in Hilbert Space.
Proceedings of the National Academy of Sciences of the United States of America

17, 5 (1931), 315–318.
[27] M. Korda and I. Mezić. 2018. Linear Predictors for Nonlinear Dynamical Sys-

tems: Koopman Operator meets Model Predictive Control. Automatica 93 (2018),
149–160.

[28] J Nathan Kutz, Steven L Brunton, BingniW Brunton, and Joshua L Proctor. 2016.
Dynamic mode decomposition: data-driven modeling of complex systems. SIAM.

[29] E. A. Lee. 2008. Cyber Physical Systems: Design Challenges. In Proc. of the In-
ternational Symposium on Object and Component-Oriented Real-Time Distributed
Computing. 363–369.

[30] H.-G. Lee, A. Arapostathis, and S. I. Marcus. 1987. Linearization of Discrete-Time
Systems. Internat. J. Control 45, 5 (1987), 1803–1822.

[31] E. Lew and et al. 2023. AutoKoopman: A Toolbox for Automated System Identifica-
tion via Koopman Operator Linearization. In Proc. of the International Symposium
on Automated Technology for Verification and Analysis. 237–250.

[32] K. Makino and M. Berz. 2003. Taylor Models and Other Validated Functional
Inclusion Methods. International Journal of Pure and Applied Mathematics 4, 4
(2003), 379–456.

[33] O. Maler and D. Nickovic. 2004. Monitoring Temporal Properties of Continuous
Signals. In Proc. of the International Conference on Formal Modelling and Analysis
of Timed Systems. 152–166.

[34] L. Mathesen, G. Pedrielli, and G. Fainekos. 2021. Efficient Optimization-Based
Falsification of Cyber-Physical Systems with Multiple Conjunctive Requirements.
In Prof. of the International Conference on Automation Science and Engineering.
732–737.

[35] L. Mathesen, S. Yaghoubi, G. Pedrielli, and G. Fainekos. 2019. Falsification of
Cyber-Physical Systems with Robustness Uncertainty Quantification Through
Stochastic Optimization with Adaptive Restart. In Proc. of the International Con-
ference on Automation Science and Engineering. 991–997.

[36] C.Menghi, S. Nejati, L. Briand, and Y. I. Parache. 2020. Approximation-Refinement
Testing of Compute-Intensive Cyber-Physical Models: An Approach Based on
System Identification. In Proc. of the International Conference on Software Engi-
neering. 372–384.

[37] T. Nghiem and et al. 2010. Monte-Carlo Techniques for Falsification of Temporal
Properties of Non-Linear Hybrid Systems. In Proc. of the International Conference
on Hybrid Systems: Computation and Control. 211–220.

[38] Z. Pan and F. Liu. 2023. Nonlinear Set-Membership State Estimation Based on
the Koopman Operator. International Journal of Robust and Nonlinear Control
33, 4 (2023), 2703–2721.

[39] André Platzer. 2018. Logical foundations of cyber-physical systems. Vol. 662.
Springer.

[40] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. 2010. Cyber-Physical Systems: The
NextComputingRevolution. InProc. of theDesignAutomationConference. 731–736.

[41] V.Ramanandetal. 2014.ModelPredictiveControlwithSignalTemporalLogicSpec-
ifications. In Proc. of the International Conference on Decision and Control. 81–87.

[42] A. Rashid, U. Siddique, and S. Tahar. 2020. Formal Verification of Cyber-Physical
Systems Using Theorem Proving. In Proc. of the International Workshop on Formal
Techniques for Safety-Critical Systems. 3–18.

[43] A. Rauh and et al. 2009. Carleman Linearization for Control and for State and
Disturbance Estimation of Nonlinear Dynamical Processes. In Proc. of the Inter-
national Conference on Methods and Models in Automation and Robotics. 455–460.

[44] S. Sankaranarayanan and G. Fainekos. 2012. Falsification of Temporal Properties
of Hybrid Systems Using the Cross-EntropyMethod. In Proc. of the International
Conference on Hybrid Systems: Computation and Control. 125–134.

[45] T. Söderström and P Stoica. 1989. System Identification.
[46] Q. Thibeault and et al. 2021. PSY-TaLiRo: A Python Toolbox for Search-Based Test

Generation for Cyber-Physical Systems. In Proc. of the International Conference
on Formal Methods for Industrial Critical Systems. 223–231.

[47] M.Waga. 2020. Falsification of Cyber-Physical Systems with Robustness-Guided
Black-Box Checking. In Proc. of the International Conference on Hybrid Systems:
Computation and Control. Article No. 11.

[48] M. O.Williams and et al. 2015. A Data–Driven Approximation of the Koopman
Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear Science
25, 6 (2015), 1307–1346.

[49] Y. Yamagata and et al. 2020. Falsification of Cyber-Physical Systems Using Deep
Reinforcement Learning. IEEE Transactions on Software Engineering 47, 12 (2020),
2823–2840.

[50] E. Yeung and et al. 2019. Learning Deep Neural Network Representations for
Koopman Operators of Nonlinear Dynamical Systems. In Proc. of the American
Control Conference. 4832–4839.

[51] Z. Zhang and et al. 2021. Effective Hybrid System Falsification Using Monte Carlo
Tree Search Guided by QB-Robustness. In Proc. of the International Conference
on Computer Aided Verification. 595–618.

[52] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski. 2014. Multiple
Shooting, CEGAR-Based Falsification for Hybrid Systems. In Proc. of the Inter-
national Conference on Embedded Software. Article No. 5.

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, AndrewMata, and Amir Rahmati

A ARCHCOMPValidation Results

In the course of performing our evaluation for this work, we vali-
dated the results reported in the falsification category of ARCH com-
petition 2022 [18] and uncovered a few issues, presented in this sec-
tion. There are two main concerns for validation:

(1) Are all constraints on inputs satisfied (i.e𝑢 ∈U) and does the
input signal adhere to instance requirements?

(2) Are the falsification results strictly correct (i.e. all reported
falsifications exhibit Q<0) ?

Regarding issue (1), it is worth noting that the primary factor con-
tributing to any discrepancies appears to be accidental human error.
For instance, in the case of the automatic transmission benchmark,
the tool falsify mistakenly sets the input range for the 𝑏𝑟𝑎𝑘𝑒 signal
as [0,350]. As such, a significant portion of the reported falsifying
inputs turns out to be invalid.

Regarding issue (2), there exist several sources of error—both com-
putational and human. These errors include mistakes in translation
of requirements, mismatch in robustness computation, numerical is-
sues, or even manual copy and paste errors. In general, our indepen-
dent robustness computation typically matches with the robustness
evaluations carried out during the ARCH competition validation
process. However, unlike our strict requirement Q < 0, the ARCH
competition allows for tolerances for each benchmark where Q<𝛿 ,
in order to compensate for the possibility of small numerical errors.

We also remark thatwhilewe automate the validation process, we
also make an effort to manually verify the results. This allows us to
alleviate some human errors in reporting of the results. For instance,
in the case of the Fuel Control benchmarks (denoted as 𝐴𝐹𝐶∗), S-
TaLiRo provides results with the input signal order as [𝜔,\] instead
of the correct [\,𝜔]. This leads to a significant discrepancy between
computed and ARCH competition results. Wemanually adjust for
this error and report the validation results with the corrected order.

We now list the issues found through our independent validation.
We note that we use ’-’ where a validation result was not available
due to the absence of data.
• Uniform random sampling and Ψ-TaLiRo report the results for
the AFC benchmark with the input signal order [𝜔,\]𝑇 instead of
the correct order [\,𝜔]𝑇 . Consequently, the automated validation
attempts by ARCH classify the results as invalid. We manually
adjust for this error and report the validation results accordingly.
• FalCAuN and falsify report input signals that exceed the bounds
for the AT benchmarks, using 350 as an upper limit instead of 325.
• For the problem instance with restricted input signals, the results
from falsify for theNNandNN𝛽 =0.04benchmarkare inconsistent
with the results reported in the ARCH paper [18].We fix this error
by reporting the correct results provided by the tool in our paper.
• FalStar violates the requirement for the NNx benchmark for the
problem instance with arbitrary input signals: While the bench-
mark requires discontinuities in the input signal to be at least 3
time units apart, the input signal reported by FalStar contains
discontinuities that are only one time unit apart.
• ForeSee violates input requirements for NNx as it does not ad-
here to the tightened input constraints 𝑅𝑒 𝑓 ∈ [1.95,2.05] for this
particular benchmark. The tool mistakenly uses the more relaxed
constraints for other NN benchmarks, where 𝑅𝑒 𝑓 ∈ [1,3].

• The input signal reported by Ψ-TaLiRo for the benchmark AFC29
violates the input constraints \ ∈ [0,61.1], because the maximum
value is \ =61.2. Since this is only a small violation, a possible ex-
planation could be an interpolation error.

B Influence of Algorithm Parameters

In this section, we report additional analysis beyond Sec. 5.3 on the
influence of algorithm parameters on the performance of our falsifi-
cation algorithm, where we consider the time step size and the influ-
ence of the different algorithm enhancement that we implemented.

B.1 Time Step Size

One important parameter for our approach is the time step size Δ𝑡 ,
whichdefineshowmanycontrolpoints areused for theparameteriza-
tionof the input signal𝑤 (𝑡), and in addition alsodetermines the time-
discretization for the Koopmanmodel and the MILP encoding. We
therefore now discuss the influence of Δ𝑡 based on the results of ex-
perimentswithdifferent timestepsizes showninTable5.As it isoften
the case for algorithms that deal with dynamic systems, one would
expect that choosing an adequate time step size represents a trade-off
between computational complexity and accuracy. While this holds
true in most cases, the results detailed in Table 5 suggest that a finer
time step can, at times, have adverse effects. For the AT1 benchmark,
for example, a time step of 0.5 results in a larger number of simula-
tions than all coarser time steps. One explanation for this counter-
intuitive result could be noise amplification and worsened general-
ization in Koopman learning when using a finer discretization.

B.2 Algorithm Enhancements

In thispaper,we introduced several enhancements toourbasic frame-
work for falsification via Koopman operator linearization. In partic-
ular, these enhancements are using reachability analysis rather than
directly encoding the dynamics of the Koopmanmodel into the opti-
mization problem, resetting the training set for the Koopman model
after 𝑁inter trajectories, excluding the first trajectory that is deter-
mined randomly from the training set, and the modification of the
temporal logic formula using the offset strategy from Sec. 4.4. The
results for different combinations of these enhancements in compari-
sonwith the baseline approachwithout any enhancement are shown
in Table 6. The results demonstrate that each enhancement improves
the average performance by increasing the falsification rate, reduc-
ing the number of simulations, or increasing the simulation time
ratio, which corresponds to a decrease in overall computation time.
In particular, introducing resets improves both the falsification rate
and the simulation time ratio. Moreover, the offset strategy enables
the successful falsification of benchmarks AT6a, AT6b, AT6c, and
AT6abc, and additionally reduces the average number of simulations
required to find a falsifying trace for benchmarks CC3, CC5 and CCx.
Using reachable sets instead of direct encoding in general improves
the simulation time ratio. The only exception are the Chasing Cars
benchmarks,where the computational cost of reachability analysis is
not justifieddue to the coarse time step and small amount of variables
for the MILP optimization problem. Finally, the last enhancement,
which is to remove the initial random trajectory from the training set
for the Koopmanmodel, reduces the number of required simulations,
especially for the Chasing Cars and Steam Condenser benchmarks.

Falsification using Reachability of Surrogate KoopmanModels HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Table 5: Comparison of the performance of our falsification algorithm for different time step sizes Δ𝑡 on benchmarks from the ARCH competition, where the

results are averaged over 10 executions. The evaluation metrics are the mean 𝑆 and median 𝑆 number of simulations as well as the falsification rate FR and the

simulation time ratio R= 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

∗100(%) . In addition to themaximumnumber of simulations𝑁max =5000we use a timeout of 1000s.

Bench. Δ𝑡 =0.1 Δ𝑡 =0.5 Δ𝑡 =1 Δ𝑡 =2.5 Δ𝑡 =5 Δ𝑡 =10

FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R

AT1 10 4.3 2.0 22.9 10 10.3 5.5 44.1 10 8.8 8.0 55.8 10 3.7 3.5 57.7 10 4.9 4.5 58.0 10 5.8 5.0 57.9
AT2 10 2.0 2.0 35.9 10 2.0 2.0 57.8 10 2.1 2.0 60.6 10 4.5 3.0 57.4 10 2.5 2.5 64.0 10 1.9 2.0 69.3
AT51 10 1.0 1.0 83.4 10 5.2 5.5 13.6 10 7.9 7.0 31.8 10 6.3 6.5 44.5 10 24.1 27.5 49.0 10 116 78.5 51.1
AT52 10 1.0 1.0 83.4 10 1.0 1.0 82.4 10 1.1 1.0 64.1 10 2.1 2.0 48.9 10 6.0 4.0 46.4 10 280 251 46.2
AT53 10 1.0 1.0 83.5 10 1.0 1.0 82.3 10 1.0 1.0 81.1 10 1.2 1.0 66.4 10 1.8 1.0 57.7 10 16.0 6.5 47.4
AT54 10 1.0 1.0 83.4 10 1.0 1.0 82.4 10 1.0 1.0 81.2 10 5.7 3.0 45.0 10 85.0 62.0 47.0 10 50.2 41.0 48.2
AT6a 10 3.0 3.0 20.3 10 5.2 4.0 41.3 10 9.1 10.0 45.4 10 9.9 5.0 49.4 10 27.6 15.5 49.7 10 37.4 17.0 51.5
AT6b 10 7.1 4.0 14.3 10 5.7 5.0 39.3 10 5.0 5.0 46.1 10 13.2 13.0 48.1 10 14.1 7.0 49.6 10 38.0 33.5 52.4
AT6c 10 28.1 10.5 10.5 10 5.4 5.0 37.5 10 6.7 6.0 44.2 10 5.8 5.0 49.6 10 10.5 10.0 50.3 10 29.0 27.5 51.2
AT6abc 10 12.1 7.5 3.5 10 4.6 3.5 25.5 10 5.9 5.0 36.5 10 7.7 6.0 39.3 10 15.8 12.5 39.6 10 24.6 21.0 41.0

CC1 10 3.3 3.5 1.9 10 2.8 2.0 21.9 10 2.3 2.0 38.4 10 2.9 2.0 44.1 10 3.4 3.0 48.8 10 6.8 6.0 43.4
CC2 - - - - 10 3.2 2.0 0.6 10 3.0 3.0 2.7 10 4.2 2.5 22.3 10 4.0 3.5 38.1 10 3.5 2.5 48.0
CC3 - - - - 9 4.6 4.0 0.3 10 3.2 2.0 0.8 10 3.9 4.0 1.5 10 4.0 2.5 9.3 10 7.1 4.5 31.3
CC4 - - - - - - - - - - - - - - - - 5 109 273 19.2 10 198 139 39.5
CC5 - - - - 1 7.0 7.0 0.4 1 4.0 4.0 0.4 4 12.3 12.0 0.48 8 44.8 46.0 3.2 10 27.7 21.5 28.8
CCx - - - - 7 93.4 105 5.9 1 194 194 5.9 7 173 100 18.6 4 266 87.5 26.6 10 110 63.5 35.3

SC 10 57.8 38.5 6.2 -

Table 6: Comparison of the performance of our falsification algorithm for different enhancements on benchmarks from the ARCH competition, where the results

are averaged over 10 executions. In particular, the enhancements we consider are resetting the training set for Koopman (Reset), offsetting the STL formula (Offset),

using reachability analysis (Reach), and omitting the initial random trajectory from the training set for Koopman (Rand). The evaluationmetrics are themean

𝑆 andmedian 𝑆 number of simulations as well as the falsification rate FR and the simulation time ratio R= 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

∗100(%) . In addition to themaximum

number of simulations𝑁max =5000we use a timeout of 1000s.

Bench. Baseline Reset Reset + Offset Reset + Offset + Reach Reset + Offset + Reach + Rand

FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R FR 𝑆 𝑆 R

AT1 5 7.6 4.0 20.5 10 8.1 8.5 33.5 10 8.1 8.5 33.5 10 8.1 8.0 49.9 10 8.8 8.0 55.8
AT2 10 2.1 2.0 41.0 10 2.1 2.0 41.0 10 2.1 2.0 41.5 10 2.1 2.0 61.3 10 2.1 2.0 60.6
AT51 10 3.0 2.0 14.9 10 2.8 2.5 14.1 10 3.1 3.0 15.0 10 6.7 5.0 28.1 10 7.9 7.0 31.8
AT52 10 1.1 1.0 59.7 10 1.1 1.0 59.0 10 1.1 1.0 59.2 10 1.1 1.0 65.6 10 1.1 1.0 64.1
AT53 10 1.0 1.0 82.1 10 1.0 1.0 82.2 10 1.0 1.0 82.4 10 1.0 1.0 82.6 10 1.0 1.0 81.1
AT54 10 1.0 1.0 82.1 10 1.0 1.0 82.4 10 1.0 1.0 82.5 10 1.0 1.0 82.6 10 1.0 1.0 81.2
AT6a - - - - - - - - 10 21.3 12.5 20.5 10 15.6 16.0 45.1 10 9.1 10.0 45.4
AT6b - - - - - - - - 10 6.1 5.0 21.2 10 8.0 5.5 44.6 10 5.0 5.0 46.1
AT6c - - - - - - - - 10 8.7 9.0 19.7 10 6.7 3.5 44.7 10 6.7 6.0 44.2
AT6abc - - - - - - - - 10 14.3 15.0 10.6 10 4.0 3.0 36.2 10 5.9 5.0 36.5

NN 10 3.9 3.5 27.7 10 4.9 3.5 33.1 10 4.9 3.5 27.1 10 1.9 2.0 41.8 10 1.9 2.0 43.5
NN𝛽 =0.04 4 34.3 31.0 10.2 8 147 82.0 21.6 8 131 118 13.6 10 37.3 19.5 25.7 10 53.9 30.5 27.5
NNx -

CC1 10 4.5 4.0 51.2 10 5.2 6.0 53.3 10 5.2 6.0 53.0 10 4.2 3.0 47.9 10 6.8 6.0 43.4
CC2 10 3.0 3.0 55.3 10 3.0 3.0 55.0 10 3.0 3.0 54.7 10 4.5 3.5 48.0 10 3.5 2.5 48.0
CC3 10 3.2 2.0 43.6 10 3.9 3.0 43.9 10 3.3 2.5 39.5 10 4.8 3.5 33.2 10 7.1 4.5 31.3
CC4 2 12.0 12.0 32.6 10 231 103 39.0 10 231 103 38.5 10 334 223 38.6 10 198 139 39.5
CC5 1 2.0 2.0 34.3 10 49.8 34.5 40.2 10 23.4 16.5 28.2 10 35.7 22.0 27.3 10 27.7 21.5 28.8
CCx - - - - 10 113 63.5 31.5 10 81.2 56.5 27.9 10 103 60.0 35.4 10 110 63.5 35.3

F16 -

SC 2 10.5 10.5 0.2 - - - - - - - - 9 126 135 5.8 10 57.8 38.5 6.2

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Koopman Surrogate Falsification
	4.1 Koopman Operator Linearization
	4.2 Reachability Analysis
	4.3 Robustness Minimization with MILP
	4.4 Specification Offset

	5 Numerical Evaluation
	5.1 ARCH Competition Benchmarks
	5.2 Aircraft Model
	5.3 Influence of Algorithm Parameters

	6 Conclusion
	References
	A ARCHCOMP Validation Results
	B Influence of Algorithm Parameters
	B.1 Time Step Size
	B.2 Algorithm Enhancements

