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ABSTRACT Implantable Cardioverter Defibrillators (ICDs) are medical cyber-physical systems that mon-
itor cardiac activity and administer therapy shocks in response to sensed irregular electrograms (EGMs) to
prevent cardiac arrest. Prior work has shown that the analog sensors used in these systems are vulnerable
to signal-injection attacks. Such attacks induce morphological changes in EGM measurements that disrupt
the normal behavior of the ICD’s control software and cause the device to administer incorrect therapy.
Existing work has primarily focused on the feasibility of such attacks and has not examined how they
can be systematically devised. In this paper, we introduce InjectICD, a model-based framework for the
systematic construction of stealthy signal-injection attacks that can thwart ICD control software. InjectICD
solves the problem of synthesizing attack signals as one of multi-objective optimization, thereby allowing it
to identify Pareto-optimal signal-injection templates that maximize the probability of attack success while
simultaneously applying minimal modifications to the original EGM. We evaluate InjectICD on an ICD
algorithm currently implemented in devices from a major ICD manufacturer. We show that InjectICD can
construct such attack templates for various heart conditions and under different adversary capabilities, while
also demonstrating that our approach generalizes to unseen EGM signals. Our results highlight the urgent
need for ICD manufacturers to incorporate defenses against signal-injection attacks.

INDEX TERMS Medical device security, signal-injection attacks, Pareto-optimal attacks.

I. INTRODUCTION
Medical devices have experienced rapid advancement over
the last four decades, evolving from simple analog devices
into complex cyber-physical systems that continuously mon-
itor biological signals to diagnose and administer therapy
With over 200,000 implanted every year [1], Implantable
Cardioverter Defibrillators (ICDs) are a prime example.
ICDs sense intracardiac electrograms (EGMs), run embed-
ded software to detect treatable arrhythmia, and deliver
appropriate therapy in the form of an electrical shock to
prevent sudden cardiac arrest. ICDs generally use a software-
based discrimination algorithm to decide whether therapy
should be delivered based on physiological criteria for
the classification of arrhythmias. These algorithms were
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designed to reproduce physician diagnoses and do not con-
sider the risk posed by an adversary intent on manipulating
their decision processes.

The ever-increasing sophistication of ICDs has enabled
them to treat a wide array of cardiac arrhythmogenic disor-
ders. Their inherent complexity has also made them prone to
security and privacy attacks. Halperin et al. [2] demonstrated
that ICDs can be reprogrammed by unauthorized users using
commercial software radios. More recently, researchers man-
aged to gain control of a pacemaker/ICD by exploiting vul-
nerabilities in the device’s remote monitoring infrastructure,
resulting in the recall of half a million cardiac devices by the
FDA [3]. Kune et al. [4] showed that ICDs are vulnerable to
signal-injection attacks, where electromagnetic interference
signals are used to inhibit pacing and induce defibrillation.
While this research provided an important proof-of-concept
for ICD attacks, it did not evaluate the expected success rate
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FIGURE 1. Example signal-injection and resulting modified signal for the
ventricular lead. The added pulses of Gaussian noise (in red) lead to an
inappropriate therapy shock (black vertical line).

of attacks under various realistic threat models, nor did it take
into consideration the stealthiness of injected signals.

In this paper, we present InjectICD, a framework for the
systematic derivation of signal-injection attacks on EGM
signals designed to cause incorrect ICD therapy decisions.
Unlike previous work that focused on demonstrating the
feasibility of such attacks, InjectICD is concerned with the
synthesis of signal-injection attacks that are at once effective
(introduce inappropriate therapy), stealthy (involve minimal
changes to the true EGM, hence minimizing the likelihood of
detection), and realistic (can be carried out under a reasonable
threat model). Figure 1 presents an example of an attack
generated by InjectICD, where an unnecessary therapy shock
is administered in response to four brief pulses of injected
noise, shown in red.

InjectICD formulates the search for an optimal attack as
a multi-objective optimization problem, maximizing both
effectiveness and stealthiness objectives.We represent signal-
injection attacks using periodic signal templates optimized
with respect to their characteristic parameters (e.g., a pulsed
square wave defined by pulse width, amplitude, and fre-
quency of pulses). To systematically determine such attack
parameters, InjectICD leverages an executable model of the
target ICD algorithm evaluated on a set of training EGM
signals.

Our work is inspired by that of Paoletti et al. [5],
who presented a formal synthesis method for finding
Pareto-optimal ICD reprogramming attacks (i.e., targeting
the device-programmable parameters). We focus in this paper
on a different attack space: the vulnerability of ICDs to small
adversarial deviations in the input EGM.

Figure 2 provides an overview of the InjectICD framework.
We model adversaries that can exploit their knowledge of the
victim’s pathology and of the ICD algorithm to craft optimal
and patient-specific attack signals. We explore the problem
under a variety of threat models: (1) Insider attacks, where the
adversary knows a patient’s heart condition and has access to
their historical EGM tracings. (2) A Knowledgeable attacker
knows the patient’s heart condition but only has access to

EGM tracings from a patient population that share the same
heart condition as the victim. (3) Universal attacks can
induce misclassifications without knowledge of the patient’s
heart condition. These three threat models are highlighted
in Figure 2.
We evaluate our InjectICD framework on an ICD discrim-

ination algorithm used by a top medical device manufacturer
under 19 heart conditions. InjectICD is able to find attack
parameters that are up to 71% successful on average in
causing the device to deliver incorrect therapy for a given
condition.

By showing how to generate stealthy and effective signal-
injection attacks, our work confirms the urgency surrounding
the lack of protection against spoofing attacks in current
ICD devices, and highlights the need to harden these devices
and their algorithms against signal injection. These attacks
do not necessarily imply that the underlying algorithm is
incorrect, but illustrate that ICD therapy can be significantly
and dangerously impacted by adversarial inputs.

In summary, our main contributions are as follows:
• We introduce InjectICD, a novel framework for the
automatic synthesis of signal-injection attacks on ICDs.
InjectICD uses multi-objective optimization to derive
attacks that are both stealthy and effective.

• We present three realistic threat models under which
such attacks can occur and explore how attackers
with various levels of knowledge can generate targeted
signal-injection attacks for multiple heart conditions.

• We evaluate our framework on an ICD discrimination
algorithm used by a major medical device manufac-
turer under 19 unique heart conditions. Our results show
that InjectICD can successfully devise injection attacks
tailored to specific cardiac arrhythmias, and remains
effective when no prior information about the victim’s
condition is available.

II. BACKGROUND
ICDs are implanted medical devices that administer an
electrical shock when a potentially life-threatening cardiac
arrhythmia is detected. Figure 3 presents a picture of an ICD
and its lead placements. These devices are implanted under
the pectoral muscles in the chest and sense the heart’s electri-
cal activity via multiple leads placed within the cardiac cham-
bers. The tracing of electrical potentials recorded by these
leads is referred to as an intracardiac electrogram (EGM).
A dual-chamber ICD (the most common kind) records three
types of EGM waveforms: (1) atrial signals that describe
the activity of the right atrium; (2) ventricular signals that
describe the activity of the right ventricle; and a (3) far-
field shock lead that provides a global view of the electrical
activity.

ICDs rely on features of these sensed waveforms to detect
tachycardia episodes (many types of arrhythmias can cause
tachycardia) and administer the appropriate therapy. A num-
ber of ICDs appeal to a tree-structured decision algorithm
that synthesizes medical judgments (i.e., how EGM features
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FIGURE 2. Overview of the InjectICD framework. The three threat models capture various adversarial capabilities. Insider Attacker has access to the
patient’s heart condition (HC) and historical data; Knowledgeable Attacker has access to the patient’s HC and historical population data; Universal
Attacker only has access to historical population data. Historical data are used within a multi-objective optimization framework to determine
Pareto-optimal parameters (e.g., pulse amplitude, duration, frequency) that defines the signal-injection attack directed at the victim’s ICD.

FIGURE 3. Illustration of a dual-chamber ICD and placement of atrial,
ventricular, and far-field (shock) leads [5].

compare to physician-determined parameters) as various dis-
criminators. These algorithms run on embedded software and
rely on signal-processing methods (filtering, peak detection)
for conveying morphological information.

A. SIGNAL-INJECTION ATTACKS
Analog sensors that are sensitive to electromagnetic interfer-
ence expose a potential vulnerability, allowing adversaries
to manipulate sensed values [6]. Cardiac devices, including
ICDs, measure the heart’s electrical activity using analog sen-
sors. These signals are then typically passed through analog
low-pass filters, amplified, and digitized.

This work considers an adversary that has the ability
to manipulate sensor readings. In particular, we consider
the case of signal-injection attacks that aim to alter the
sensed readings of cardiac electrical activity by taking
advantage of unshielded leads. The feasibility of such
signal-injection attacks on similar medical devices has been
well-studied [2], [4], [7]. These attacks can appear as

baseband electromagnetic interference to avoid bandpass fil-
tering or amplitude-modulated attacks that take advantage of
systems that respond to low-power, high-frequency signals.
Kune et al. [4] showed examples of signal spoofing that could
inhibit pacing or introduce defibrillation shocks. Here, we are
further interested in controlling the magnitude of signal injec-
tions and systematically generating malicious perturbations
in such a way that they are imperceptible while affecting the
decision making of the ICD discrimination algorithm.

B. EFFECT OF THERAPY DISRUPTION
In delivering therapy, an ICD can make two types of incor-
rect therapy decisions: false positives, when unnecessary
therapy is administered, and false negatives, when the ICD
fails to deliver a necessary therapy. These errors can occur
in non-adversarial settings for reasons such as dislodged
leads [8] or poorly calibrated parameters [9].

False positives (FPs) can lead to significant harm. Inap-
propriate shocks cause not just discomfort but are also
associated with increased morbidity and long-term risk of
death [10]. Repeated unnecessary shocks have been shown
to adversely affect mental well-being, reduce the quality of
life, damage cardiac tissue, and even result in proarrhythmia
(provocation of a new arrhythmia) [11], [12]. Patients inter-
viewed in a quality-of-life survey described the feeling of a
shock as ‘‘an earthquake’’ and ‘‘being hit by a truck’’ [13].
Moreover, shocks significantly deplete the device’s bat-
tery, thus reducing the ICD’s lifetime and causing early
re-implantation.

False negatives (FNs) can have even more severe conse-
quences. Without defibrillation, ventricular fibrillation leads
to sudden cardiac death. Delayed therapy is linked to the
degradation of patient outcomes,with therapy delayed for
more than two minutes associated with a significantly lower
probability of survival after 24 hours [14].
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III. ICD THREAT MODELS
We consider three ICD threat models spanning different
attacker capabilities. See Figure 2. Each model assumes a
different level of access to the target patient’s medical data.
All threat models assume the following:

• Device knowledge: The adversary has knowledge of the
device model and the ability to implement a faithful (and
executable) replica of its discrimination algorithm using
publicly-available device manuals, reverse engineering,
or corporate espionage.

• Signal-injection capability: The attacker can inject arbi-
trarily malicious signals to alter the EGM readings
sensed by the ICD. We note that the signal source is
always at some distance from the target ICD. Physical
transmission of signals can be accounted for through the
use of radio propagation models [15].

• Training signals: The attacker has access to a dataset
of EGM signals that are used to craft signal-injection
attacks. Depending on the threat model, these signals
may come from the specific victim or from population-
level data, such as the NIH-funded PhysioNet reposi-
tory [16]. PhysioNet provides public access to datasets
of cardiac traces for research purposes.

Two of our three threat models assume knowledge of the vic-
tim patient’s heart condition. This information is useful, as the
adversary, based on their knowledge of the discrimination
algorithm, can identify features of the EGMs that are critical
to making patient-specific therapy decisions. For example,
the appropriate therapy classification for a patient who suffers
from supraventricular tachycardia relies on a different set of
discriminators than those for a patient with atrial fibrillation.
As we will see, the attacker can use this knowledge to train
highly patient-specific attacks by selecting EGM signals that
are consistent with the victim’s condition.

The measure of attack effectiveness optimized at training
time can be seen as an estimate of the true effectiveness
of the attack deployed in the field. The accuracy of this
estimate directly depends on the amount of knowledge the
attacker possesses about the victim’s underlying condition.
We consider the following three threat models, presented
in decreasing order of the knowledge level of the victim’s
condition.

A Insider Attacker – access to patient’s heart condi-
tion and historical EGMs. The Insider Attacker threat
model is the most permissive. The adversary has access
to the targeted patient’s historical EGM data and there-
fore highly specific training EGMs. The adversary also
knows the patient’s heart condition, which can be used
to tailor the attack to the victim. This threat model is
applicable when the attacker has access to the patient’s
medical records. As many healthcare data breaches
have shown recently, such a level of access is not far-
fetched. As one example, personal medical data was
stolen from the health insurance company Anthem Inc
in 2015; the breach affected 78.8 million people [17].

FIGURE 4. Overview of the method to construct signal-injection attacks in
InjectICD.

B Knowledgeable Attacker – access to patient’s heart
condition and surrogate patient EGMs. This adver-
sary does not have access to the targeted patient’s
historical data. They know, however, the target’s heart
condition and have access to EGM data from a popula-
tion of individuals with the same condition. The adver-
sary might obtain this data from the aforementioned
public repositories; for example, PhysioNet offers
real EGM traces corresponding to various ventricular
arrhythmias [16]. As we will show, this information is
often sufficient to devise an effective attack.

C Universal Attacker – agnostic to heart condition,
access to population of EGMs. In this threat model,
the attacker deploys two types of universal attacks (i.e.,
agnostic to the patient-specific heart condition) that can
reliably induce false-positive (Universal Attacker-FP)
and false-negative (Universal Attacker-FN ) misclassi-
fications, respectively. To do so, the attacker exploits
training EGMs from a population of EGM data span-
ningmultiple heart conditions, and develops FN attacks
for signals that require shock therapy, and FP attacks
for those that do not. A Universal Attacker may not
be able to tune the objective for attack optimization
as finely as in the other two models, but they can
take advantage of their knowledge of the discrimination
algorithm to mount a successful attack.

1) ATTACK DETECTION MECHANISMS
An ICD keeps only a few representative signals in its storage,
typically corresponding to episodes of tachyarrhythmia and
delivered therapies. Thus, there are two detection mecha-
nisms that our attacks must evade: a clinician inspecting
stored waveforms during routine check-ups, or a security
expert called to examine the device after a particularly sus-
picious adverse event. In both cases, since the device stores
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EGM signals that are already perturbed by the attack (if
any), and the attack leaves no other trace in the ICD, the
best strategy to evade both kinds of detection is to make
the perturbations imperceptible so that the stored tracings
will appear benign. Hence, as we explain in the next section,
it is sensible to quantify stealthiness using measures of signal
distance between the original and perturbed EGMs.

IV. ATTACK DESIGN
We formulate the problem of finding stealthy and effective
signal modifications as a multi-objective optimization prob-
lem designed to maximize both attack success and stealthi-
ness. The training procedure is illustrated in Figure 4. At time
t , we consider an adversary that has control over an injected
signal m(t), targeting an underlying signal s(t), and leading
to sensor reading s′(t) = s(t) + m(t). The malicious signal
m(t) is not designed to dominate s(t) but rather to cause
small changes to s(t) that result in incorrect therapy. In our
model, the injected signal affects each of the three leads in
the same way because the leads are close together (within a
few centimeters); see Figure 3.

We consider time-bounded signals s, defined as functions
s : T→ Rn, where T = {0, 1, . . . ,T } ⊂ Z≥0 is the discrete-
time domain, for some bound 0 < T < ∞. We denote
with T (s) the length of s. The attack-synthesis problem is
represented as one of multi-objective optimization, where
the effectiveness of the attack is at odds with the stealthi-
ness of the signal perturbations. Our threat models assume
the availability of a set D of training signals, used to find
the perturbation m that maximize average effectiveness and
stealthiness over D. Formally, this amounts to solving the
problem:

max
m

[
1
|D|

∑
s∈D

fE
(
s, s′

)
,

1
|D|

∑
s∈D

fS
(
s, s′

)]
,

s′(t) = s(t)+ m(t) for all t ∈ T (1)

where s is the training EGM sample, fE
(
s, s′

)
is the effective-

ness of the spoofed EGM s′ with reference to the therapy of
the nominal/training EGM s, and fS

(
s, s′

)
quantifies stealth-

iness in terms of the distance between the nominal EGM and
the spoofed one.

The distribution of training signals naturally depends on
the specific threat model. In particular, insider attacks are
trained using signals from the same patient used for testing.
Knowledgeable attacks are trained with signals coming from
different patients but with the same heart condition as the one
used for testing. Universal attacks are trained by aggregating
samples across multiple heart conditions that are suitable for
either false positive or false negative attacks. See Table 1 for
the list of heart conditions considered in our evaluation.

To facilitate the search for an optimal perturbation m,
instead of searching in the space of possible signals, we
consider a family of parametric signals determined by a small
set of parameters a. In particular, we focus on periodic signals
that can be described by their frequency, amplitude, and

pulse width. This parameterization provides us with a way to
explore a tractable space of possible signal-injection attacks.

For a fixed choice of parameters a, we consider multiple
signalsm generated using random initial offsets and define fE
and fS in Eq. (1) as the average effectiveness and stealthiness
over such generated signals.

A strength of our framework is that it provides multiple
Pareto-optimal solutions of Eq. (1). In this way, the adver-
sary can choose among the full range of attacks yielding
optimal effectiveness-stealthiness trade-off. For the results
presented in Section V, we assume that the attacker chooses
the Pareto-optimal solution with the shortest `2-distance from
the ideal (but unrealizable) attack, i.e., the one that attains
both 100% effectiveness and 100% stealthiness; see Figure 7.
Other post-hoc decision criteria are possible, however.

2) STEALTHINESS OBJECTIVE
We define the stealthiness of an attack in terms of the differ-
ence between the original and modified signals. Specifically,
we looked at root mean squared error (RMSE), cross-
correlation, and Signal-to-Interference ratio. (The last one
was used by Kune et al. [4] to quantify the disturbance
of EMI attacks.) We found that RMSE performed best in
the search for optimal attack parameters, and therefore we
present results with RMSE as our stealthiness objective.

Given that our signals are 3-dimensional, as the ICD senses
ventricular, atrial and far-field EGMs (see Section II), our
RMSE-based stealthiness function is defined as follows:

fRMSE
(
s, s′

)
=

3∑
i=1

√√√√ 1
T (s)

T (s)∑
t=1

(
si(t)− s′i(t)

)2
, (2)

Since stealthiness (i.e., signal similarity) is antipodal to signal
distance, we set fS

(
s, s′

)
= −fRMSE

(
s, s′

)
in the optimization

problem (1).
Note that in Figures 7 and 8, we report stealthiness as a

value in the range [0, 1] defined as 1 − f̄RMSE . Here, f̄RMSE
is the result of applying a min-max scaling transformation to
fRMSE using the value range that the RMSE attains over the
entire training set during optimization.

3) EFFECTIVENESS OBJECTIVE
An attackm is effective on a signal s if the resulting perturbed
signal s′ induces a different therapy decision. Let Th(s, t) be
the output of the ICD discrimination algorithm at time t on
signal s, where Th(s, t) = true if the algorithm decides to
deliver therapy at time t , Th(s, t) = false otherwise. Then,
the effectiveness objective fE (s, s′) of Eq. (1) is defined as:

fE (s, s′) =


1 ∀t. Th(s,t)=False and ∃t. Th(s′,t)=True

1 ∃t. Th(s,t)=True and Th(s′,t)=False

0 otherwise

(3)

Eq. (3) represents the idea that an effective attack signal s′ is
one that introduces at least one unnecessary therapy in an FP
attack (top case), or suppresses at least one required therapy
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in an FN attack (second case).1 Hence, the mean fE value over
the training signal used in problem (1) can be interpreted as
the probability of attack success.

We also investigated alternative definitions for fE , includ-
ing ‘‘surrogate’’ measures that do not directly quantify
effectiveness but target EGM features used in specific dis-
criminators. For example, an FP attack can be induced by
maximizing the average ventricular period—the surrogate
measure in this example—thus increasing the likelihood that
the ICD detects a tachyarrhythmia episode and consequently
delivers unnecessary therapy. Nevertheless, the effectiveness
measure given by Eq. (3) proved to be both more straight-
forward to calculate than alternative surrogate measures and
empirically worked better for attack optimization.

V. EVALUATION
A. EXPERIMENTAL SETUP
1) DISCRIMINATION ALGORITHM
Many ICDs administer therapy based on the outcome of
a discrimination algorithm: essentially a decision tree that
operates over features extracted from three EGM signals
(atrial, ventricular, and far-field leads). We choose to evaluate
our InjectICDmethodology on an implementation of the ICD
discrimination algorithm used by a major medical device
manufacturer [18], [19].

To determine whether a patient’s rhythm should be treated,
this algorithm uses atrial and ventricular interval timing (i.e.,
the time between two consecutive peaks in the atrial and
ventricular EGMs, resp.), along with ventricular interval cor-
relation analysis, to determine whether a patient’s rhythm
should be treated. Interval timing for each lead is based on a
standard peak detection algorithm that uses bandpass filtering
and thresholding.

The features used in this algorithm are extracted and stored
for each ventricular interval (i.e., heartbeat). The decision
to administer shock therapy is made independently at each
beat interval, based on the set of features extracted from the
previous 10 beats. Note that this makes the decision at the
i-th beat dependent on the previous 20 beats, as the features
computed at the (i − 10)-th beat were based on its previous
10 beats.

The ICD discrimination algorithm is presented in Figure 5.
The discriminators used in the algorithm are described below.
While other manufacturers may use windows of different
lengths and slightly different logic, they all generally consider
similar features.

In the following, VF, VT and SVT stand for ventricu-
lar fibrillation, ventricular tachycardia, and supraventricular
tachycardia, respectively.

D1: Compares the ventricular period to a threshold to detect
the onset of VF.

D2: Checks if a VF episode is persistent.

1Note that only one of the two attacks applies to any EGM s: the FP
condition on s (∀t. Th(s, t) = False) and the FN condition (∃t. Th(s, t) =
True) are mutually exclusive.

FIGURE 5. ICD discrimination tree. Discriminators D1-D7 compare
features extracted from EGMs with thresholds programmed by physicians.
At each ventricular interval (i.e., beat), the algorithm considers the last
10 beats to determine a path through the tree, ending at one of the leaves
L1-L13. Leaves that result in a therapy shock decision are shown in red.

D3: Compares the ventricular period to a threshold to detect
the onset of VT.

D4: Checks if a VT episode is persistent.
D5: Compares atrial and ventricular periods to infer the ori-

gin of the tachycardia.
D6: Discriminates between VT and SVT by comparing

the morphology of the far-field shock EGM with a
pre-computed normal sinus rhythm template.

D7: Discriminates between VT and SVT by analyzing atrial
periods and the variance of ventricular periods.

2) SYNTHETIC EGMs
We evaluated the InjectICD framework on synthetic EGM
traces generated through the method of Jiang et al. [20].
This approach has been used in several prior papers on
model-based analysis of ICD therapy, including the ICD
reprogramming attacks by Paoletti et al. [5]. It uses a Timed
Automata model of the electrical conduction system of the
heart to generate the timings of cardiac events (i.e., peaks in
the EGMs), and samples the morphology of the peaks from a
database of real patient records [21].

We generate EGMs for 19 distinct arrhythmias; see Table 1.
We chose these heart conditions because theywere previously
used to evaluate the accuracy of the discrimination algorithm
in a clinical trial [22]. They thus represent a realistic collec-
tion of arrhythmias requiring ICD therapy.

The 19 heart conditions captured by these signals rep-
resent a variety of arrhythmias. Some are treated by
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TABLE 1. Heart conditions with general attack types.

low-energy anti-tachycardia pacing therapy, while others
(such as VF) are treated by a single high-energy defibril-
lation shock. While a patient who is diagnosed with VF
can still suffer from inappropriate shocks, missing one of
the high-energy shocks can have more dire consequences
given their condition. In Table 1, we therefore classify these
19 conditions into two groups: False Positive (inappropriate
shocks) and False Negative (missing shock) attacks.

For each heart condition, we generated 25 60-second EGM
traces. Each trace includes an additional 10-second prefix
characterized by normal sinus rhythm, which is required
for discriminator D6. Of these 25 EGMs, 5 were used for
training and 20 for testing. Each training EGM was split into
non-overlapping segments of 20 beats each. The resulting
segments constitute our training dataset D.

3) PARAMETERIZED ATTACK TEMPLATE SIGNALS
We considered the following two templates for periodic
attack signals:
• Square pulses with parameters: amplitude, frequency,
pulse width.

• White Gaussian noise with parameters: signal-to-noise
ratio (SNR), frequency, pulse width.

The search space for the attack parameters was defined by
the following ranges: frequency, [1/600, 1/100] ms−1; pulse
width, [0, 200] ms; SNR, [10, 15] dBW (white Gaussian
noise only); amplitude, [0, 0.25] in normalized units. These
ranges were experimentally determined by evaluating attacks
on all of the test data. Attackswith an SNR above 15 (i.e., with
very low noise levels) rarely succeeded, while square ampli-
tudes above 0.25 (inducing very large perturbations) always
succeeded. Ranges for the pulse widths and frequencies were
chosen following similar reasoning.

4) TRAINING ALGORITHM
To solve Eq. (1), we used the NSGA-II genetic algorithm
(GA) for multi-objective optimization [23] implemented in
MATLAB’s gamultiobj function. Our problem is char-
acterized by a relatively small number of parameters but

involves a challenging objective function (effectiveness fE ),
which is non-convex, non-linear, and non-differentiable.2

This kind of problem structure is well-suited to a stochastic
search algorithm like NSGA-II, rather than gradient-based
or constraint-solving methods. For NSGA-II, we selected
a population size of 50 at each of 25 generations (with a
maximum stall of 5 generations), after some hyper-parameter
tuning.

Each run was performed on training samples of 20 beats
and tested on 60-second samples from a withheld set. This
test set was shared across all threat models (analogous to the
‘‘Victim Patient’’ in Figure 2), even though each threat model
has different rules for attack evaluation; i.e., it uses a different
distribution of training signals, as explained in Section IV.

B. EXPERIMENTAL RESULTS
1) FP AND FN ATTACKS
In Figure 6, we show examples of two successful signal-
injection attacks, one for the FP case and one for the FN
case. In both cases, the injected signal was generated from the
solutions (amplitude, frequency, and pulse-width parameters)
for a pulsed square wave yielded by our multi-objective opti-
mization formulation. The injected signals are displayed at
the top of the figure. The ventricular and atrial components of
the original EGM are shown in blue, overlaid by correspond-
ing components of the perturbed signal (red). Discriminator
values are also shown for the original andmodified signals for
each example: at each sensed ventricular beat, the discrimina-
tion algorithm evaluates D1-D7 as described in Section V-A1.
The differences in these values explain the FP case (inap-

propriate therapy): additional VF episodes are sensed, as the
injected wave induces changes to the legitimate signal that
cause the calculated ventricular periods to shorten (i.e.,
increased heart rate). Discriminators D1-D4, which detect the
onset and persistence of a VF episode, reflect the change. This
tricks the discriminator into detecting a persistent VF episode
and consequently (and incorrectly) delivering therapy.

The FN case is arguably more subtle: the attack induces
changes to the signal by increasing the ventricular period
length by a small amount at each of the last 5 intervals (i.e.,
beats are detected slightly after). These changes caused the
VT duration check at D4 to fail, suppressing the therapy that
would have been applied during a VT episode. This shortened
VT interval length was not sustained in the modified signal.

2) ATTACK SYNTHESIS AND SELECTION
InjectICDwas successful in synthesizing attacks for all threat
models, and these attacks were found to generalize well to
unseen data. Each training run yielded a set of Pareto-optimal
solutions, where a solution corresponds to a particular set of
values of the signal-injection template parameters. An exam-
ple of a Pareto front is displayed in Figure 7. The plot clearly

2This is not just because the definition of effectiveness (Eq. (3)) depends
on a logical predicate, but also because the ICD output itself Th(s, t) depends
on the execution of the discrimination tree, making it non-differentiable.
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FIGURE 6. Examples of an FP attack (left) and an FN attack (right). The Discriminator-value heatmaps below the EGMs are reflective of the values of
discriminators 1-7 (true values in green, false values in red), and illustrate the changes induced by the signal injection. In the FP attack, the injected
square pulse causes additional VF episodes to be detected, resulting in an inappropriate shock around 1.3 seconds (6th beat). The first table shows the
values of discriminators for the original EGM signal: the first four D1 values are false. The second table shows the values of discriminators after the
attack: D1 and D2 are switched to True. In the FN attack, the pulse-injected signal elongated the ventricular periods in the EGM window shown.
Originally, a VT episode would have persisted after 6 beats (shown by the green D4 box at the 6th beat around 1.2 seconds). After the attack,
discriminator D4 remained False.

demonstrates the trade-off between effectiveness and stealth-
iness: in order to increase effectiveness, it is inevitable for
the attack to become less stealthy. Having access to the full
set of Pareto-optimal attacks provides a key advantage to the
attacker, who can use the Pareto front to better guide their
decision-making process (e.g., by prioritizing effectiveness
over stealthiness). In this work, we apply a widely-used
criterion to select the ‘‘best’’ solution from a Pareto front:
we select the solution with the shortest `2-distance from
the ideal attack, i.e., the one attaining maximum effective-
ness and stealthiness (corresponding to the top-right corner
in Figure 7).

3) ATTACK TESTING SUCCESS
Figure 8 shows the average attack success across test
EGM samples for all threat models, for attacks rendered
using the square pulse and white Gaussian noise templates

respectively. For each test case, the attack signal was gener-
ated using the best Pareto-optimal parameters obtained during
training. Results are averaged over all heart conditions.
Specifically for each test sample, we have four possible mod-
els: one trained with data from the same patient (i.e., Insider
Attacker), one trained with data from a different patient with
the same heart condition (Knowledgeable Attacker), and two
with population data from FP and FN conditions (Univer-
sal Attacker-FP and Universal Attacker-FN), respectively.
Our framework yielded more successful Universal Attacker
attacks when the two cases were separated than when all of
the data were combined;3 this relaxation is still realistic, as an
adversary might try both types of attacks if nothing about the
patient is known.

3It is difficult, if not impossible, to find a signal perturbation that intro-
duces FPs for some signals and FNs for others.
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FIGURE 7. Pareto-optimal solutions for an FN trace. We choose as the
‘‘best’’ solution in the set the one with shortest distance (dashed line) to
the ideal point in the objective space, i.e., (1, 1) (100% effective and most
stealthy).

The results of Figure 8 allow us to understand how the
probability of attack success is affected by specific limitations
on stealthiness. We report average success rates on test data
across all the attacks that are at least as stealthy as a given
threshold. Figure 8 shows how success rates evolve across
different percentiles values (0%, 25%, 50%, and 75%) for the
stealthiness metric fS . For example, the average success prob-
ability of about 0.3 for the Knowledgeable Attacker model
using square pulse attacks at 50% stealthiness is obtained
by considering all synthesized Pareto-optimal attacks with
stealthiness values in the top 50% of all attacks.

As expected, access to patient-specific information (actual
or similar historical data) used by the Insider Attacker and
Knowledgeable Attacker models generally led to more suc-
cessful attacks than the other threat models at each stealthi-
ness threshold. We also observe that the square-pulse attack
pattern is consistently more effective than the Gaussian-pulse
attack. This may imply that randomized perturbations are not
as effective as deterministic attack patterns.

Another finding is that the decay rate of attack success as
stealthiness increases is not constant: most models exhibit a
greater decline in the success rate in the 50-100% stealthiness
range than in the 0-50% range. Our approach was able to find
successful attacks under the Universal Attacker threat model
as well, although at lower stealthiness levels. We observe that
Universal Attacker-FN attacks generally performed worse
than their FP counterparts. These attacks indeed require the
suppression/delay of multiple beats, meaning that they must
be timed precisely to align with ventricular intervals. On the
other hand, FP attacks are comparably easier to conduct,
as they can introduce peaks at any time point in order to
successfully shorten the ventricular period.

Figure 8 reveals some interesting cases where compar-
isons between threat models are not as expected. For exam-
ple, Knowledgeable Attacker performed slightly better than
Insider Attacker for Gaussian attacks at the 50% stealthiness

threshold. While the difference is small, it can be explained
by the stealthiness distribution of attacks at the higher per-
centiles. Figure 9 provides additional insights into the distri-
bution of attacks generated by each model and corroborates
this finding. Each point represents attacks on 20 60-second
traces for a given heart condition. Insider Attacker attacks are
generally much more stealthy than other models. This view
also corroborates the expectation that stealthier attacks are
less effective within a threat model.

The spread in points in Figure 9 for a given attack type
and threat model also illustrates that some heart conditions
are more vulnerable to certain types of attacks than others.
For example, Knowledgeable Attacker points are clustered
more closely together in the Gaussian noise results than in
the square-pulse results. This suggests that Gaussian noise
attacks induce similar changes in EGM signals across all
heart conditions, while the effects of square pulses are more
differentiated.

VI. RELATED WORK
Yan et al. [6] consider the general problem of systematizing
knowledge of analog attacks against sensor circuitry and
corresponding defenses. Their main contribution is a sensor
security model that engineers can use to better express analog
security properties of circuitry without needing to learn a sig-
nificantly new notation. Their model introduces transfer func-
tions and a vector of adversarial noise to represent adversarial
capabilities at each stage of a sensor’s signal-conditioning
chain.

Halperin et al. [2] were the first to show that ICDs
can be manipulated by wireless attacks, using off-the-shelf
hardware. They reverse-engineered an ICD’s communica-
tion protocol and used software radios to deliver a range
of attacks, including reprogramming attacks (that alter the
device’s parameters to induce inappropriate therapy) and bat-
tery depletion attacks. Kune et al. [4] furthered this work by
measuring the vulnerability of a number of recently-approved
ICDs to various signal-injection attacks across a range of
distances and power levels. They found that the devices
were susceptible to baseband and amplitude-modulated,
low-power attacks. They also introduced possible defenses,
including shielding and detection via a signal-corruption
metric.

More recent work has looked at synthesizing stealthy
attacks. Paoletti et al. [5] presented a formal approach
to formulating stealthy reprogramming attacks on ICDs.
The authors show that slight deviations in programmed
parameters can result in improper therapy decisions.
These deviations can be systematically crafted, requiring
only knowledge of the ICD model and availability of
population-level EGM recordings (akin to our knowledgeable
attacker threat model).

Related work also involves model-based approaches to
medical-device security. This includes attacking electrocar-
diogram (ECG)-based biometric authentication [24], a study
of the adversarial robustness of deep-learning systems for
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FIGURE 8. Average attack success rate vs. stealthiness level across test sets. Each (xstealth, ysuccess) point represents the average
success rate of attacks that were at least as stealthy as xstealth. The xstealth cutoffs are discretized into four percentiles: 0%, 25%,
50%, and 75%. For instance, the leftmost bars represent the average success rate of our Pareto-optimal attacks (selected from the
optimal front as per Figure 7), over all stealthiness levels. The second group of bars represents the average success rate for attacks
ranked among the top-75% in terms of stealthiness.

FIGURE 9. Average attack success rate vs. stealthiness level for Pareto-optimal attacks of each attack type. The average success rate
of all points of a given threat model and attack type is shown as the first group of bars in Figure 8.

ECG-based arrhythmia detection [25], and attacks on CT
scans synthesized using deep generative models [26].

To the best of our knowledge, no existing work has
looked at automated methods to derive stealthy and effective
signal-injection attacks on cardiac devices: those aimed at
inducing incorrect therapy decisions through minimal pertur-
bations of the target cardiac signals.

VII. DISCUSSION
Our results highlight the scope and success rate of stealthy
attacks against ICDs under different knowledge levels about
potential victims. While Kune et al. showed the feasibility
of attacks that completely dominate the true EGM, we have

demonstrated how a range of low-power, systematically-
devised attacks, centered around pulsed (noisy) signals, can
interfere with ICD behavior, while keeping the legitimate
signal still highly discernible (i.e., with high Signal-to-
Interference ratios, as defined in [4], Eq. 5). Our work is
the first to evaluate a range of signal-injection attacks over
a large dataset of EGM data. Our results show that attacks
can be devised systematically depending on the information
available about the patient, andwithout the need to overpower
the legitimate EGM.

Another contribution of our work w.r.t. Kune et al. [4]
is that we show that even a very slight modification to
a legitimate EGM—short pulses of noise that leave the
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legitimate waveform discernible to observers —could cause
the ICD discrimination algorithm to behave incorrectly.
In other words, we expose vulnerabilities in the sensing
and discrimination algorithms themselves, rather than in the
unshielded electromagnetic components of the device. Our
work suggests further investigation into the brittleness of ICD
algorithms w.r.t. small amounts of noise and what steps could
be taken to improve the robustness of the system.

It is also important to remember that the results we have
presented represent the success of the InjectICD framework
in suppressing or inducing a shock therapy in 60-second
windows. If the attacker were to run longer attacks or multiple
attacks at the same time, the likelihood of success could
compound over time and approach 1.

A. POSSIBLE DEFENSES
Kune et al. [4] proposed both analog and digital defenses
against arbitrary signal injections, which would also defend
against the targeted signal-injection attacks introduced in this
paper. On the analog side, their proposed defenses include
electromagnetic shielding and the application of a conducting
material to shield the device from radiation. They showed
that even an imperfect ICD shield raised the power require-
ments for a successful attack. Other hardware-based defenses
include incorporating low-pass filters and differential circuits
to compare voltage readings against a reference. These are all
methods that are well-known and commonly used in analog
electronics, but are still absent from most ICDs.

Kune et al. [4] also proposed a number of digital defenses
that could prevent or detect the type of attack proposed in
this paper. For one, they propose tracking a metric of signal
contamination, related to the power of the sensed waveform,
to detect anomalies. They moreover developed an adaptive
filtering mechanism that consists of a series of analog shields
and filters, along with statistical methods to verify the accu-
racy of signals after digital conversion. These methods would
generally prevent the InjectICD low-power injections from
succeeding as well.

However, while these defenses were published almost a
decade ago, most manufacturers have still not implemented
them. The attacks generated by InjectICD still pose a real
threat to existing ICDs, particularly to those that are already
implanted in patients. Our work demonstrates the scope of
possible attacks and raises the urgency for the adoption of
the aforementioned defenses, especially since we introduce
attacks that can evade visual detection.

VIII. CONCLUSION
In this paper, we introduced the InjectICD framework for
synthesizing stealthy and effective signal-injection attacks
on ICDs. By formulating the problem as one of multi-
objective optimization, our approach can identify parame-
ters for the injected-signal templates that are Pareto-optimal
w.r.t. such an effectiveness-stealthiness tradeoff. We consid-
ered three realistic threat models, assuming adversaries with
tiered access to a victim patient’s historical EGMs and heart
condition.

We evaluated InjectICD on EGM traces corresponding
to 19 heart conditions. Our results show that InjectICD is
successful in generating attacks for all heart conditions under
the various threatmodels. Our results also highlight the urgent
need formedical devicemanufacturers to harden their devices
against signal-injection attacks.

For future work, we plan to evaluate InjectICD on other
ICD models and with more complex attack signals (param-
eterized by more variables). We also intend to investigate
attacks that succeed across longer time frames, such as
False Negative attacks that suppress therapy for longer dura-
tions. We suspect that these types of attacks will require a
sequence of different signal-injection templates. The duration
and ordering of multiple templates could also be framed as
an optimization problem. Finally, we plan to experimentally
validate the InjectICD framework by evaluating our attack
strategies ex vivo on actual ICD devices.
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