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ABSTRACT
ServerlessComputinghas quickly emerged as a dominant cloud com-
puting paradigm, allowing developers to rapidly prototype event-
driven applications using a composition of small functions that each
perform a single logical task. However, many such application work-
flows are based in part on publicly-available functions developed
by third-parties, creating the potential for functions to behave in
unexpected, or even malicious, ways. At present, developers are
not in total control of where and how their data is flowing, creating
significant security and privacy risks in growth markets that have
embraced serverless (e.g., IoT).

As apracticalmeansof addressing this problem,wepresentValve,
a serverless platform that enables developers to exert complete fine-
grained control of information flows in their applications. Valve
enables workflow developers to reason about function behaviors,
and specify restrictions, through auditing of network-layer infor-
mation flows. By proxying network requests and propagating taint
labels across network flows, Valve is able to restrict function be-
havior without code modification. We demonstrate that Valve is
able defend against known serverless attack behaviors including
container reuse-based persistence and data exfiltration over cloud
platform APIs with less than 2.8% runtime overhead, 6.25% deploy-
ment overhead and 2.35% teardown overhead.

CCS CONCEPTS
• Security and privacy→ Access control; Distributed systems secu-
rity; Information flow control.

KEYWORDS
Serverless Computing, Information Flow, Security

ACMReference Format:
Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rah-
mati, and Adam Bates. 2020. Valve: Securing FunctionWorkflows on Server-
less Computing Platforms. In Proceedings of TheWeb Conference 2020 (WWW

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporateWeb sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380173

’20), April 20–24, 2020, Taipei, Taiwan.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3366423.3380173

1 INTRODUCTION
Serverless Computing is a new paradigm in cloud computing that
abstracts away infrastructuremanagement tasks like load-balancing
andscaling fromtenants, enabling themto focussolelyonapplication
development. It has become popular among industry practitioners,
with less time spent on managing servers and reduced cost being
cited as its most significant advantages [90]; the serverless market’s
growth is expected to exceed $8 billion per year by 2021 [23]. In
serverless computing, tenants implement an application’s logic as
an interdependent set of functions, each ofwhich performs a specific
task. To achieve the broader goals of the application, these functions
coordinate through interaction with other components including
event triggers, message queues and object stores. Furthermore, the
serverless ecosystem enables rapid prototyping [38] of applications,
allowing tenants to use purpose-built functions from public mar-
kets [11, 44, 56], closed-source license-based functions [58, 59], or
third-party dependencies in their custom function code [57, 64],

The diverse and distributed nature of serverless applications
has led to the resurgence of prevalent cloud security issues. In an
evaluation of 1000 open-source serverless projects, 21% of them
contained critical vulnerabilities or misconfigurations [1]. Issues
such as cross-tenant side-channels [92, 101] are still present in the
serverless ecosystem, as are canonical web application vulnerabil-
ities [47] like event injection [2, 22, 26, 30, 31], access control and
security misconfigurations [7, 53], and bugs in library and platform
code [19, 25, 51, 54]. Past experience tells us that these vulnerabilities
can be leveraged to gather information and steal secrets from cloud
customers, at times leading to even more severe attacks [65].

While the existence of canonical security issues is unsurprising,
the ephemeral nature of serverless infrastructure might suggest that
such vulnerabilities are more difficult to exploit in practice. A func-
tion’s lifecycle, from creation to destruction, typically spans just
milliseconds of time; is it possible to exploit a function and perform
malicious acts so quickly?Unfortunately, growing evidence suggests
thatdeterminedattackers arefindingcreativework-arounds.One im-
portant attack strategy is to rapidly exfiltrate stolen data [26].Worse,
attackers have also discovered that persistent function compromise
is possible – after writingmalware or toolkits to an in-memory /tmp

https://doi.org/10.1145/3366423.3380173
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partition, attackers can game cloud platforms’ “warm container” re-
use policy to cache a compromised copy of the function that persists
across invocations [26]. Furthermore, simply restricting functions’
network access is ineffective as attackers have developed methods
of laundering stolen data through legitimate platform APIs in order
to reach the open Internet [30, 31].

Given the popularity of serverless platforms, it is unsurprising
that industry has rushed forward with a variety of security solu-
tions. Existing solutions primarily focus on traditional vulnerabili-
ties, statically analyzing function source code and explicitly defining
fine-grained policies before deployment [24, 33, 48, 49, 69, 98]. Dy-
namic solutions have also been proposed that may be useful in safe-
guarding serverless computings’ novel attack surfaces. For example,
products that model function behavior using machine learning to
detect anomalous behaviors [3, 49] or wrap function event handler
wrappers to inspect specific activities [10]. Other tools could assist
in post-mortem attack investigation by tracing function activities
and collecting error reports [21, 35, 41, 66].

While promising, we note several limitations of existing tech-
niques that prevent them from being a complete solution to server-
less security. Many of these techniques require either source code
access or specific knowledge of internal function state; this approach
is simply not practical when considering the use of pre-compiled
third-party objects (e.g., [57, 64]) or proprietary closed-source func-
tions (e.g., [58, 59]). Moreover, existing products rarely consider the
interactions between functions, giving rise to emergent attack vec-
tors such as API-based data exfiltration [26]. Similarly, logging and
debugging support in serverless platforms [75] lacks the ability to
monitor a serverless application as a whole and therefore struggle
to trace sophisticated attacks. Assumptions of unrestricted function
access, combined with a function-centric perspective on serverless
security, undermine the efficacy of these approaches.

In this paper we introduce Valve a transparent and workflow-
centric approach to authorizing serverless information flows. Rather
than analyzing or modifying function code, Valve deploys agents
residing within each function-instance (i.e., container)1 to monitor
function’s file and network behaviors. As a function-agnostic mean
of interpreting network activity, we leverage the ubiquity of REST-
based APIs in event-driven serverless applications, which are traced
by a network proxy in each Valve agent. Agents dynamically gener-
ate taint labels that describe each function’sfile accesses andnetwork
requests. These labels are reported to a centralized controller. The
Valve controller then aggregates this information to discover the
flow paths of the application. These learned flows provide insight
into the information flow across the serverless application. They
also constitute a default security policy for the serverless application
which can optionally be further restricted by the workflow designer.
When set to enforcement mode, Valve uses this policy to medi-
ate the network activities of all serverless components. Finally, to
address the problems of persistent function compromise and cross-
invocation side channels, Valve agents contain a garbage collection
mechanism that sanitizes containers between invocations.

We implement Valve on OpenFaaS [43], an open-source server-
less computing platform and evaluate it across three representative

1Wewill use ‘function-instance’ & ‘container’ interchangeably in the rest of the paper.

FaaS applications: (1) An open-source E-commerce serverless ap-
plication, (2) a selection of popular OpenFaaS functions from its
function store [44], and (3) exemplar Trigger-Action workflows fre-
quently used in IoT environments. We demonstrate that Valve can
protect workflow developers against common classes of attacks
on serverless platforms, while providing themwith auditing tools
to understand the information flow across their applications. Our
experiments show that Valve can provide complete, fine-grained
information flow control across FaaS platform, while incurring less
than 2.8% runtime overhead.

In summary, this paper makes the following contributions:

• WepresentValve a serverless platform that enables dynamic
information flow tracking and control in distributed function
workflows to prevent data exfiltration and offer better observ-
ability into the serverless ecosystem.

• Wethoroughlyexploreseveralexemplarcasestudies todemon-
strate how Valve can be used to secure and audit real-world
serverless application.

• WeimplementValveonanopen-sourceserverlesscomputing
platform, OpenFaaS [43], with Kubernetes [37] orchestration
support. We evaluate the effectiveness of our system by pro-
viding security guarantees in an open-source serverless retail
framework [32].

2 BACKGROUND
While early cloud computing solutions like IaaS (Infrastructure-as-
a-service) gave enterprises access to seemingly infinite backend
computing infrastructure [80], the serverless cloud paradigm has
freed tenants from the burden of infrastructure management, al-
lowing them to concentrate on application development. Serverless
platforms adopt a pay-per-use model where users are billed accord-
ing to fine-grained resource usage (CPU, memory and network),
significantly reducing the application deployment cost [72]. Server-
less developers implement application logic as interdependent sets
of functions each performing a specific task. Individual functions
are executed in response to different event source triggers (e.g., http
web request, message broker services, object storage server events,
cron jobs) and can be chained together to formworkflows. In turn,
the cloud service provider takes care of spawning and managing
function instances (in isolated sandboxes or containers) according
to developer-defined resource usage caps [45, 52, 68] in addition to
handling load-balancing, auto-scaling and operational monitoring.
To further ease the task of building serverless applications, assisting
frameworks (e.g., [12, 15, 34]) are also available for orchestrating
different serverless components like message queues, functions, and
object stores.

Functions are intended to be stateless, meaning that the output
of the function (usually returned to the client as JSON) should exclu-
sively be the result of its explicit inputs. Accordingly, each function
invocation should ideally take place in a “sterile” environment, such
as a fresh container that is immediately destroyed following exe-
cution. In practice, however, due to the cost of setting up an entire
runtime environment for each function execution, “warm” contain-
ers are cached and reused for future invocations of the same function
within a pre-configured timeout window [67, 73, 94]. Opaque plat-
form policies [6, 16, 28] and scheduling algorithm details obscure
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Figure 1: A reference architecture of serverless real estate listing website.

this practice, making it difficult for customers to account for such
issues during application development.

3 MOTIVATION
3.1 Serverless Application Scenario
Let us now consider a real-estate website that has transitioned to
using a serverless cloud backend, as has already been done by pop-
ular companies including Realtor [50] and Zillow [5]. The website
serves three stakeholders: the website owner, the customers of the
website (real estate companies) and the clients of the customers
(i.e. website users). An exemplar serverless architecture for such
a website, based on these case studies made available by Amazon
AWS [5, 50], is shown in Figure 1. The website backend consists of
several functions, data stores, and an API gateway. The API gateway
exposes REST endpoints to customers for several website features,
including: (1) posting home and apartment listings, (2) submitting
identity proof documents to get a “verified” label on their listings and
(3) uploading client information (e.g. phone number, email address)
for targeted advertisements of new listings. The functions can be
explicitly invoked by an orchestrated workflow or triggered by data
store events. The orchestration layer of the FaaS platform provides
different forms of inter-function communication (i.e. asynchronous
callbacks, event sources,workflowdesigning tools)2 to establish flow
paths that connect the different functions. Finally, the developers
also leveraged the FaaS platforms security settings to set a static
network policy that restricts Internet access to all functions except
where strictly necessary (e.g,. f5, f11).

In building the real estate website, the developers drew from a va-
riety of heterogenous function sources, including custom logic, open
source third-party functions, andproprietary services forwhich they
pay licensing fees. Specifically, theymakeuse of third-party software
and packages for f5 [39, 57], f7 [36], f8 [58, 59], f9 [4], f10, and f11
[27, 70, 89, 103]. While these components dramatically simplify the
process of building the website, they also introduce the application
to code and dependencies that are outside of the direct control of
the developer. One potential consequence of these dependencies is
a data breach resulting from buggy or malicious functions; we intro-
duce two plausible attacks in Table 1. The first attack demonstrates a

2AWS step functions, for example. [12]

Attacks Description Valve solution
Data leak through
network (Attack 1 )

Static network policies
bypassed by passing data
to downstream functions
with network access

Network
level taint tracking

Cross invocation
side channel (Attack 2 )

Residual data in
warm containers leaked
across invocations

File access taint
tracking and function
garbage collection

Table 1: Summary of attacks prevented by Valve.

method for bypassing the developer’s static network policy by exfil-
trating data through intermediate functions. Function f7 is able to ac-
cess customer credentials indatabaseD2, but cannotdirectly leak this
data to the Internet. Instead, theattackerutilizesan indirectflow f7→
f6→ f8→ f11 to leak credentials out via messenger chatbot (Fig 1,
1 ). The second attack demonstrates a method of surveilling website
customers from the vantage point of a malicious co-tenant utilizing
the same image enhancement service (Fig 1, 2 ) . Because f5 is subject
to container reuse, upon function compromise the attacker installs
persistent malware that reads customer photographs during future
invocations and transmits them to a remote location on the Internet.

3.2 Limitation of existing security tools.
Anumber of commercial security solutionsmay be useful in combat-
ing these threats, which we broadly categorize into pre-deployment
effort and runtime protection tools. Pre-deployment efforts include
language runtime libraries that secure a single function according to
developerdefinedpolicies aspart of the source code [24, 33, 69], static
analysis of function source code and configuration files to detect
violations of the principle of least privilege [48, 49, 98], and checking
function dependencies against vulnerability databases [3, 60, 61].
These solutions are largely function-centric and their efficacy de-
pends on the correctness of policies written by the function develop-
ers, complete access to source code and configuration files, and the
compatibility of the tool with specific language runtimes, platforms,
andevent sources.Amongother shortcomings, suchpre-deployment
security tools will be unable to reveal the implicit flows in Figure 1
due to lack of source code access (f5,f7,f8).

Run time protections include machine learning based detection
of anomalous function behaviors [3, 49]. Other approaches attempt
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to prevent event-data injection prevention by inspecting incom-
ing function invocation requests [10] using existing penetration
testing techniques like sqlmap [62]. The robustness of the machine
learning models, or the completeness of code injection analysis,
determines the usefulness of such solutions. Another variation of
runtime solutions focus onprovidingbetter observability into server-
less component usage. Serverless platform providers offer execution
tracing, error reporting, alerts, and monitored metrics of function
executions [13, 14, 17, 29]. However, existingmonitoring techniques
offer limited observability into the interactions between functions
and most of these monitoring services are limited by strict usage
limits [18]. Third party observability tools [21, 35, 41, 66] offer more
features (distributed tracing, cost analysis), but are limited to cer-
tain language runtimes and platforms. These solutions are mostly
geared towards function-level protection and do not consider more
complex information flow violations. For example, while individual
transitions in the flowpath f7→ f6→ f8→ f11 are all legitimate in
the example real estate website, the entire flowpath should not occur
and could indicate a serious data breach. Because the observabil-
ity tools only track cross-component transitions in isolation, they
would be unable to detect or prevent this attack. Moreover, we are
aware of no approach that considers the matter of intra-container
interactions (e.g., container reuse), which is necessary to prevent
cross-invocation attacks (e.g., f5).

3.3 Our approach.
To address emerging threats in the serverless ecosystem, we argue
that a holistic approach is required, one that canmediate information
flows across multiple functions as well as cross-invocation flows
of the same function. To this end, we propose Valve, a security-
enhanced serverless platform that performs runtime tracing and
enforcement of network- and file-based information flow. Function-
level operations are described as taint labels that can be propagated
across workflows to capture inter-function security violations. Our
solution is agnostic to function source (e.g., third party, closed-
source), but can also be used in concert with more invasive security
solutions when they are applicable.

Valve runs as a service within the FaaS platform, augmenting
the orchestration layer to provide stronger security guarantees, de-
scribed in Figure 1 as F0. A Valve agent residing in every container
performs function-level monitoring and taint tracking (not shown
in Figure 1). Valve enables network-level taint tracking to monitor
network accesses of each function and generates restrictive dynamic
flow policies to prevent attack 1 . Valve prevents attack 2 by file-
access based taint tracking and garbage collection at the end of every
function execution.

4 DESIGN
4.1 Threat Model & Assumptions
This work considers a typical public compute cloud, focusing specif-
ically on 3 stakeholders that are summarized in Table 2. A Cloud
Provider hosts a public FaaS cloud that allows customers to design
complex applications based on one or more functions, charging cus-
tomersby the invocation.TheCloudProvider is responsible for assur-
ing isolationbetweencustomers andmakingavailable securitymech-
anisms (e.g.,firewalls, virtualnetworks) thataredirectlyconfigurable

Participant Roles
Cloud Provider Hosts Public FaaS Cloud

Exposes security mechanisms toWorkflow Developer
Provides isolation between customers

Workflow Developer Customer of Cloud Provider
Designs serverless web application
Specifies security policy

FunctionWriter Publishes Functions used byWorkflow Developer
Functions include potentially-unwanted features

Table 2: Summary of participant roles in our system’s design.

bythecustomer.Wecall thesecustomersWorkflowDevelopers (or sim-
plyDevelopers), as they leverage anumberof functions todesign com-
plex heterogenous web services. WorkflowDevelopers are also re-
sponsible for configuring the securitymechanismsmade available by
the Cloud Provider. Third-Party functions are made available to the
WorkflowDeveloper by FunctionWriters. FunctionWritersmay offer
a licensed service toDevelopers (e.g.,[36, 58, 59]) or publish functions
to public markets like the AWS Serverless Application Repository.3

The goal of the Developer is to design a web service that handles
sensitive data such as personally-identifiable information, finan-
cial transactions, or user credentials. However, all functions used
in workflows may contain vulnerabilities, as well as potentially
unwanted features in the case of third-party functions. Thus, we as-
sume that functions are untrusted and can behave arbitrarily, or even
maliciously, with the goal of leaking sensitive data. The malicious
functions may use any permissible system flow to exfiltrate data,
including transmissions to the external network, writing to persis-
tent storage somewhere in the cloud, or even writing to ephemeral
storage inside the function container for later retrieval. The latter in-
cludes thepossibility of cross-invocation side channels [31].Multiple
malicious functions may also collude, creating the possibility that le-
gitimate flows through the system could be abused to exfiltrate data.

We make the following assumptions about this environment:
First, we assume that the Cloud Provider is trusted and will not
mishandle customer data or tamper with theWorkflow Developer’s
security policies. We also assume that all serverless functions are
invoked throughuseofRESTAPI calls or other formofRemoteProce-
dure Calls (event triggers, asynchronous callbacks). This assumption
stands valid because web and API serving are the most popular use
cases in the serverless paradigm [86]. Finally, our solution will in-
troduce profiling and mediation mechanisms into parts of the FaaS
platform, including function containers; we assume that manda-
tory access controls (e.g., SELinux [55]) are sufficient to prevent the
attacker from being able to disable or subvert these components.

4.2 Design Goals
The limitations of existing tools discussed in section 3 inform the
following high level design goals of our system:
G1 Transparent: FaaS benefits tremendously from the public shar-

ing of functions under various licensing agreements, rendering
unsuitable any solution that impedes function publishing. Thus,
Valve should not require access to function source code, which
may be unavailable, normay it instrument functions, whichmay
violate licensing agreements (e.g., [36, 39]).

3https://aws.amazon.com/serverless/serverlessrepo/

https://aws.amazon.com/serverless/serverlessrepo/
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G2 Widely Applicable: Because the FaaS paradigm is language inde-
pendent,Valve shouldmakenoassumptions regarding language
runtimes, nor should it assume the presence of specific functions
or components (e.g., Apache Kafka) which may not be present
in all serverless applications.

G3 Fine-Grained Observability: The serverless concept belies the
considerable complexity of individual functions; functions are
often comprised of many control flow paths and may exhibit
behaviors that are rarely seen during testing. To account for
this, Valve should support a fine-grained view of functions that
permits it to differentiate between different control flow paths.

G4 Dynamic Flow Control: In light of the complexity of functions
and their potential for exploitation, Valvemust be capable of
dynamically determining the security level of a given application
flow rather than employ a (potentially brittle) static policy that
could lead to overprivilege (e.g., Attack 1 in Figure 1).

4.3 Overview
This section provides an overview of the Valve architecture. Valve
consistsof twomaincomponents: theValveagentand theValve con-
troller. Figure 2 provides an overview diagram of these components.
ValveAgent TheValve agent resides inside the function-instance
container and monitors (and optionally mediates) activity on a per-
invocation basis. This monitoring takes two forms, both of which
are completely transparent to the operation of the function:
• API Monitoring. The Agent keeps track of every REST-based
API callmadeby the functionbyproxyingnetwork requests issued
fromwithin the container. These calls are recorded as taints,where
the taint is defined by the specific API call, and sent to the Valve
controller.Whenoperating in enforcementmode, theValveAgent
authorizes or denies each API request according to the active
security policy.

• Disk Access Monitoring. The Agent records the disk activity
of the function in order to track the possibility of information
leakage through cross-invocation side-channels. When operating
in enforcement mode, the ValveAgent performs post-invocation
garbage collection by deleting or truncating files that were modi-
fied by the function.

Valve Controller The Valve controller runs as a service along-
side other functions in the cloud platform. It performs four tasks: 1)
audits the information flows of the serverless application by accu-
mulating the taints generated byValve agents, 2) generates a default
application security policy based on the audit trace, 3) incorporates

Listing 1: Function invocation request payload for function f5 as
shown in Figure 1.

1 {"input":[

2
{"imageId":"image1","desc":"unique image id","type":"string"},

3 {"customerId

":"Bob","desc":"website client owning the image","type":"string"},

4
{"imagePayload":"<imagedata >","desc":"input image","type":"base64"}

5 ],

6 "taints":[

7 {"

label":"f_1","invocation -id":"1234","time":"2019-10-11T00:43:42Z"},

8 {"label":"D1.datastore

.com","invocation -id":"1238","time":"2019-10-11T00:43:46Z"},

9 {

"label":"f_4","invocation -id":"1239","time":"2019-10-11T00:43:50Z"}

10 ],

11 ...

12 ]

13 }

14

Workflow Developer-specified authorization rules and other con-
figuration information into the security policy, and 4) orchestrates
enforcement bypushing the security policy to theRequestValidation
component of the Valve agents.

4.4 ValveAgent
In standard FaaS design, a tiny webserver (i.e., a request handler)
runs inside the function container that accepts function invocation
requests. This request handler parses the incoming request object
and starts execution of the function. The Valve agent works along-
side the request handler to transparently monitor the execution and
to enforce important security features of Valve. The Valve agent
consists of several sub-units.

4.4.1 Network Profiler. A central challenge in our design is tracing
function activities while avoiding dependence on source code, in-
strumentation, or assumptions of language (G1). To address this, we
leverage the ubiquity of REST-based APIs in the serverless ecosys-
tem. The event-driven nature of serverless prompts function to
lean heavily on Web and API design paradigms [86], such that
most of the interactions take place in form of REST based API calls.
These APIs are not only function-agnostic, but due to the nature
of URLs define a resource hierarchy that is easy for human agents
to interpret. For example, it is intuitive that the REST endpoint
https://api.github.com/users/Bob/ repos respondswitha listofGitHub
repositories of user Bob. The generic and intuitive properties of these
APIs make them an ideal mediation point within our architecture.

To observeAPI usage,Valve deploys a transparent forward proxy
in each container that begins proxying network requests when the
container starts running. This network proxy fields all incoming
and outgoing network requests originating from the container. To
address the matter of encrypted traffic, the Valve Agent contains
an HTTPS proxy (mitmproxy [76]), which is a common technique
in enterprise environments for monitoring security-sensitive net-
work flows [77]. Thus, the network proxy serves as a transparent
mediation point that allows us to observe the dynamic behavior of
functions, identify hidden flow paths, and ultimately derive flow
control policies (G3).

We extend the mitmproxy-based network proxy to perform net-
work level tainting. The proxy inspects REST call headers and body

https://api.github.com/users/Bob/repos
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fields to determine appropriate labels withwhich to taint the current
flow. The generated taint is sent to the Valve controller along with
an invocation ID and the time of invocation. Additionally the Agent
propagates the cumulative taint for the current workflow alongwith
all outbound API requests from the current function; an example of
howwe extend these requests is given in Listing 1. Since each invo-
cation request is a unit of work in FaaS, functions are short-lived and
taint labels are assigned per request. As a result, the “taint explosion”
problem that commonly affects taint analysis tools is not an issue
in this domain. Moreover, the network taints can be summarized
when a function makes multiple calls to the same domain, providing
significant compression of taint labels.

4.4.2 API Request Validator. In protecting a serverless application,
one advantage enjoyed by the system defender is that functions
provide clear andwell-defined interfaces. The request validator com-
ponent leverages this advantage to create an enforcement point for
function activities.

Upon creation of the function-instance container, theAPI Request
Validator registers with the Valve Controller in order to receive the
relevant policy module in the application’s security policy. We will
discuss the Valve policy language in greater detail in Section 4.5,
but examples of function modules are given in the policies depicted
in Figure 3. When a function invocation request is received in the
container, the Request Validator extracts the taint label from the in-
bound request (see Listing 1), and references the policy to determine
if the request is authorized. The Request Validator can allow, deny
or forward the requests according to the flow policies enforced by
the Valve controller (G4).

If the request is prohibited according to the security policy, the
Validator will drop the request silently and return error code to the
caller function module (G1). In typical applications, silently termi-
natinganaccess requestwould frequently result in cascading failures
that could cause the application to crash. Fortunately, the ephemeral
nature of functions means that we do not need to worry about the
stability of the application following a denied access request – at
worst, this denialwill cause a singleweb sessionworkflow to fail. The
API Request Validator will only interfere with legitimate workflows
if the security policy instructs it to do so; we describe the process
through which theWorkflowDeveloper can iteratively specify an
effective security policy in Section 4.5.4.

4.4.3 File Access Profiler. Cross-invocation interference is an im-
portant tool for serverless adversaries that enables persistence as
well as surveillance of application customers [26], as shown in At-
tack 2 of our motivating example. While Valve’s network-layer
profilingwill allow us to trace and prevent data exfiltration attempts,
it is also necessary tomonitor file access behaviors to deny attackers
these cross-invocation capabilities.

Each Valve Agent contains a system call tracing mechanism
for monitoring function file I/O, allowing Valve to detect cross-
invocation flows resulting from container reuse (G3). The tracer
intercepts and records all system calls issued by the function using
the strace utility. For file operations (open, read, write, lseek, etc.),
the tracer records the accessed file, offset, and bytes accessed. After
the function finishes execution, all data on disk that wasmodified by
the function is erased from the container. Because current attacks
require an explicit data flow from one function execution to another,

this procedure is sufficient to deny cross-invocation capabilities to
the attacker.

Wemake the following observations about the practicality of this
approach. First, we note that cross-invocation data flows violate the
serverless abstract in which functions are intended to be stateless.
There is therefore no legitimate purpose for cross-invocation data
flows, making our garbage collector compatible with existing func-
tions. Second, because commercial platforms [8, 9] provide only a
small writable partition (e.g., just /tmp) using an in-memory filesys-
tem, our approach is significantlymore efficient than destroying and
reprovisioning the entire container.
File Access tainting Garbage collection is sufficient to prevent
explicit cross-invocation data flows by denying persistence to the
attacker; however, this is not to say that file access behaviors (specif-
ically reads) will not inform the security of the application. For
example, the function-instance may be provisioned with sensitive
information (e.g., authorization tokens) that itself may be the target
of attacks. To account for this, ValveAgents also report taint labels
on file accesses. From the full set of file I/O calls captured by strace,
the Agent filters all files not accessed with read permission. This list
is further filtered to remove special Linux virtual files (e.g. dev, proc,
network sockets) since these files do not result in security-sensitive
data flows [102]. The remaining list of accessed files are included in
the taint label of the function invocation. Since garbage collection
is performed after each function invocation, the set of modified files
are not tainted by previous function executions and thus can be
excluded from taint-label generation. This step permits workflow
designers to express policies that constrain the flow of file-based
data through the application.

4.5 Valve controller
The Valve controller runs as a service in the FaaS platform and
coordinates among the different application components to manage
the application workflow. It consists of the following components:

4.5.1 The Flow Control Policy Model. At the core of Valve is an ex-
pressive policymodel for controlling information flows in serverless
applications. Our policy grammar is given in Table 3. Each policy is
defined by a set of function policy modules governing the permit-
ted Ingress and Egress behaviors of the function. Each rule in the
function policy can be expressed as a condition over the active taint
labels of the flow to specify the permissibility of data exchangeswith
a given subject (e.g., web address, function, API call). Rules can either
be restrictive or permissive (i.e., Allow or Deny). The restrictive rules
are evaluated at the enforcement point prior to permissive. As we
describe below, permissive rules are used by the Valve Controller
as it automatically produces a whitelist policy after profiling the
application, while restrictive rules can be added by the developer to
exert further control over information flow.

In designing this policymodel, our objectivewas to adhere closely
to existing security paradigms in cloud computing. We note that, by
definingourpolicy in termsof ingress andegress rulesover functions,
our policy is actually an extension of the existing standard network
policy specifications on commercial cloud platforms. Our adherence
to this style of policy specification demonstrates a possible path
forward for integrating information flow controls into production
cloud systems. Below, we explain how Valve assists the developer
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  f7:
      ingress:
        - If taint-label in {f1,D1,f4,f5,f6} Allow f6 
      egress:
        - If taint-label in {f1,D1,f4,f5,f6,f7} Allow 
          https://D2.datastore.com #database D2 url
  f6:
      ingress:
        - If taint-label in {f1,D1,f4,f5} Allow f5
      egress:
        - If taint-label in {f1,D1,f4,f5,f6} Allow f7
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7} Allow f8
  f8:
      ingress:
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7} Allow f6
      egress:
        - If NULL Allow https://D2.datastore.com
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7,f8} 
          - Allow f9
          - Allow f10
          - Allow f11
  f11:
      ingress:
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7,f8} Allow f8
      egress:
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7,f8,f11} 
          - Allow http://cerberhhyed5frqa.fkr84i.win
          - Allow https://bestboy.top
          - Allow POST https://www.googleapis.com/upload/gmail/v1/
            users/userId/messages/send
          - Allow POST https://graph.facebook.com/v4.0/me/messages?
            access_token=<PAGE_ACCESS_TOKEN>· · ·

<latexit sha1_base64="T4Bq/XivoFAzPI/y/2h+BD++6dw=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBm0sYxgPiA5wt7eJlmyt3fuzgnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlRgIRtFKnUqPhTGaSr9UdqvuHGSVeDkpQ45Gv/TVC2OWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83ik5t0pIBrG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87opDq79TKgkRa7YYtEglQRjMnuehEJzhnJiCWVa2FsJG1FNGdqIijYEb/nlVdKqVb3Lau2+Vq7f5HEU4BTO4AI8uII63EEDmsBAwjO8wpvz6Lw4787HonXNyWdO4A+czx9ph4+N</latexit>

· · ·<latexit sha1_base64="T4Bq/XivoFAzPI/y/2h+BD++6dw=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBm0sYxgPiA5wt7eJlmyt3fuzgnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlRgIRtFKnUqPhTGaSr9UdqvuHGSVeDkpQ45Gv/TVC2OWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83ik5t0pIBrG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87opDq79TKgkRa7YYtEglQRjMnuehEJzhnJiCWVa2FsJG1FNGdqIijYEb/nlVdKqVb3Lau2+Vq7f5HEU4BTO4AI8uII63EEDmsBAwjO8wpvz6Lw4787HonXNyWdO4A+czx9ph4+N</latexit>

(a) Default Policy generated by Valve.

  f7:
      ingress:
        - If taint-label in {f1,D1,f4,f5,f6} Allow f6 
      egress:
        - If taint-label in {f1,D1,f4,f5,f6,f7} Allow 
          https://D2.datastore.com #database D2 url
  f6:
      ingress:
        - If taint-label in {f1,D1,f4,f5} Allow f5
      egress:
        - If taint-label in {f1,D1,f4,f5,f6} Allow f7
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7} Allow f8
  f8:
      ingress:
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7} Allow f6
      egress:
        - If NULL Allow https://D2.datastore.com
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7,f8} 
          - Allow f9
          - Allow f10
          - Allow f11
  f11:
      ingress:
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7,f8} Allow f8
      egress:
        - If taint-label contains {D2} 
          - Deny https://www.googleapis.com/upload/gmail/v1/
            users/userId/messages/send
          - Deny https://graph.facebook.com/v4.0/me/messages?
            access_token=<PAGE_ACCESS_TOKEN>
        - If taint-label in {f1,D1,f4,f5,f6,D2,f7,f8,f11}
          - Allow http://cerberhhyed5frqa.fkr84i.win
          - Allow https://bestboy.top
          - Allow POST https://www.googleapis.com/upload/gmail/v1/
            users/userId/messages/send
          - Allow POST https://graph.facebook.com/v4.0/me/messages?
            access_token=<PAGE_ACCESS_TOKEN>

· · ·
<latexit sha1_base64="T4Bq/XivoFAzPI/y/2h+BD++6dw=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBm0sYxgPiA5wt7eJlmyt3fuzgnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlRgIRtFKnUqPhTGaSr9UdqvuHGSVeDkpQ45Gv/TVC2OWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83ik5t0pIBrG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87opDq79TKgkRa7YYtEglQRjMnuehEJzhnJiCWVa2FsJG1FNGdqIijYEb/nlVdKqVb3Lau2+Vq7f5HEU4BTO4AI8uII63EEDmsBAwjO8wpvz6Lw4787HonXNyWdO4A+czx9ph4+N</latexit>

· · ·
<latexit sha1_base64="T4Bq/XivoFAzPI/y/2h+BD++6dw=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbtYaBm0sYxgPiA5wt7eJlmyt3fuzgnhyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlRgIRtFKnUqPhTGaSr9UdqvuHGSVeDkpQ45Gv/TVC2OWRlwhk9SYrucm6GdUo2CST4u91PCEsjEd8q6likbc+Nn83ik5t0pIBrG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87opDq79TKgkRa7YYtEglQRjMnuehEJzhnJiCWVa2FsJG1FNGdqIijYEb/nlVdKqVb3Lau2+Vq7f5HEU4BTO4AI8uII63EEDmsBAwjO8wpvz6Lw4787HonXNyWdO4A+czx9ph4+N</latexit>

(b) Refined Policy updated by theWorkflowDeveloper.

Figure 3: Security policies for the Real Estate website in Figure 1.

⟨policy⟩ ::= ⟨function⟩ :{ ⟨ruleset⟩ } ⟨policy⟩ | ϵ
⟨ruleset⟩ ::= ⟨direction⟩ :{ ⟨rules⟩ } |

⟨direction⟩ :{ ⟨rules⟩ } ⟨ruleset⟩
⟨direction⟩ ::= Ingress | Egress

⟨rules⟩ ::= ⟨condition⟩ ⟨action⟩ ⟨subject⟩ |
⟨condition⟩ ⟨action⟩ ⟨subject⟩ , ⟨rules⟩

⟨condition⟩ ::= NULL | if ⟨labels⟩ in { ⟨flowtaint⟩ }
⟨flowtaint⟩ ::= ⟨labels⟩ | ⟨labels⟩ , ⟨flowtaint⟩

⟨labels⟩ ::= T1 ...Tn
⟨action⟩ ::= Allow | Deny | FwdTo ⟨ip⟩
⟨subject⟩ ::= NULL | ⟨web-address⟩ | ⟨port⟩ |

⟨function⟩ | ⟨restapi⟩
⟨port⟩ ::= ⟨number⟩ : ⟨protocol⟩

⟨function⟩ ::= ⟨url-string⟩
⟨restapi⟩ ::= ⟨method⟩ ⟨web-address⟩
⟨method⟩ ::= GET | PUT | POST | DELETE

⟨web-address⟩ ::= ⟨ip⟩ | ⟨url-string⟩
⟨protocol⟩ ::= prot1 | prot2 | ... | protk

⟨ip⟩ ::= ip address
⟨url-string⟩ ::= web url
⟨number⟩ ::= [0-9]+

Table 3: Policy Specification Grammar in Valve.

in specify a workflow-wide security policy through taint auditing
and automated policy generation, then provide a guided example
of how our policy can be used to secure the exemplar application
presented in Section 3.1.

4.5.2 Taint Auditor. This component serves as an orchestration
mechanism for the network and file taints generated by the Valve
Agents. The Taint Auditor gathers taint labels sent from function-
instances after each invocation and propagates the taints to down-
stream functions in the workflow. As a result, each flow in the appli-
cation accumulates taints as it progresses through theworkflow. The
Taint Auditor also records application-side taint data in a centralized
log. This log will be used to derive a default security policy, but
also assist the developer in understanding and iteratively debugging
function workflows.

4.5.3 Policy Generator. Specifying an effective security policy is a
notoriously difficult problem (see, e.g., verification efforts of SELinux
policies [83, 84, 99]) – failure to adequately restrict flows violates
the principle of least privilege and leaves the system vulnerable (e.g.,
[99]), but defining overly-restrictive rules prevents the correct op-
eration of the system (e.g., [97]). While a complete solution to policy
specification is well beyond the scope of this work, Valve simplifies
the process of policy writing through the inclusion of an automated
policy generator capable of profiling serverless applications in order
to define a default whitelist security policy. Inspired by SELinux’s
audit2allow utility,4 Valve supports a permissive mode in which
the taint audit log is used to produce an Allow rule for every flow
observed by the Taint Auditor. Following this application profile
phase, the default policy is presented to theWorkflow Developer .

4https://linux.die.net/man/1/audit2allow

https://linux.die.net/man/1/audit2allow
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This default policy not only serves as a starting point for iterative
policy refinement, but also summarizes the contents of the audit log
into a definitive guide on the behavior of the constituent functions
within an application.

After the default policy is derived, Valve can be switched into
enforcementmode, atwhich point theAPI Request Validatorswithin
the ValveAgents will begin to deny accesses that do not adhere to
the function ruleset. While our intent is for Workflow Developer
to add and modify rules, it is worth noting that the default security
policy already enforces least privilege on information flows within
the application.We envision the primary reasons for further revision
to the policy will be 1) theWorkflowDeveloper wishes to deny un-
wanted functionality contained in third party functions, and 2) the
WorkflowDeveloper identifies coverage gaps from the application
profiling phase that require rule modification. During enforcement
mode, the Taint Auditor assists in these revisions by logging unau-
thorized accesses, enabling theWorkflowDeveloper to iteratively
refine the active security policy.

4.5.4 Policy Case Study. We now return to our motivating example
(Figure 1), to demonstrate how Valve can be used to prevent attacks
on serverless applications. In the real estate application, it is neces-
sary for the function f6 to to communicatewith f7 in order to support
verified listings. It is also necessary for the website to advertise new
listings, which among other data flows includes f6 transmitting data
that reaches the open Internet via f11 (i.e., f6 → f8 → f11). The
Valve Policy Generator will therefore produce a ruleset that per-
mits D2 → f7 → f6 → f8 → f11; unfortunately, this is the precise
authorization needed by the attacker to exfiltrate the contents ofD2.

This default security policy generated byValve is given in Figure
3a. The taint auditor observes that f7 receives incoming traffic from
https://D2.datastore.com (databaseD2) and then invokes the down-
stream function f6. Similarly, information flows from f5→ f6 and
f6→ f8 are authorized. The taint auditor also observes f11 contacts
malicious domains http://cerberhhyed5frqa.fkr84i.win and https:
//bestboy.top [20]. Moreover, f11 invokes a non-malicious gmail API
to send email, although it is only supposed to invokemessenger apis.
The policy generator allows all such flows during training phase and
generates the default policy to present to theWorkflow Developer.

After profiling the application to produce this default policy, the
WorkflowDeveloper audits the system and is surprised to see that
their licensed functions are contacting some less-than-reputable
domains within the advertising network, and is also using an unad-
vertised gmail API for some unknown communication. This last flow
may serve a legitimate purpose, but it is unclear to the Workflow
Developer because the source code is proprietary. As a result, the
Workflow Developer becomes concerned that there exists a flow
from their credential database to the Internet. They are unable to
use existing network controls provided by the cloud to address this
problem because such mechanisms are not information flow-based.

To address these shortcomings, theWorkflow Developer makes
the following modifications to the policy, which is given in Listing
3b. Having written f6, theWorkflowDeveloper is certain that data
from D2 should not reach the advertising functions; in fact, only
events triggered by f5 prompt f6 to post a new listing. To solve this
problem, the Workflow Developer specifies a new restrictive rule
that denies egress from f11 under any circumstances if taint label

Workflow Function Description

Product Catalog product-catalog-builder The owner can add products
to the catalog

product-catalog-api The products can be fetched
from the catalog

Product Purchase

product-purchase-authenticate Authenticate the username
and password

product-purchase-get-price Fetch the item price
product-purchase-authorize-cc Authorize the card for the

transaction
product-purchase-publish Publish whether the transac-

tion succeeded or failed

Product Photos

product-photos-assign Assign the task to click a
photo to a photographer

product-photos-message Message the photographer
about the assignment

product-photos-record Update the db to reflect the
assignment

product-photos-receive Receive the photograph from
the photographer

product-photos-success Denote successful receiving
of the photograph

product-photos-report Update the database to re-
flect the completion of the
assignment

Table 4: Summary of Hello,Retail! functions.

TD2 is active on the flow. This allows a middle ground between us-
ability and security, because theWorkflowDeveloper does not know
if the gmail API is essential to f11’s functionality. Now, the gmail
API nor any other egress flowmay carry data fromD2. Regardless
of the possibility of data exfiltration, theWorkflowDeveloper is also
concerned about advertising functions contacting known-malicious
domains. To address this, they strike the rules from f11’s policy that
permitted these connections.

5 IMPLEMENTATION
We implemented Valve using programming language Go 1.12 on
top of OpenFaaS version 0.18.1 [43], an open source serverless com-
puting platform.We have minimally modified (33 lines of Go code
excluding build scripts, comments and blank lines) the OpenFaaS
source code to instrument the request handler in each container
to proxy network requests and track system calls as part of Valve
agent. This demonstrates that the principles of Valve can be easily
incorporated into existing systems making it widely applicable (G2).
We have used mitmproxy [76] python library to proxy HTTP and
HTTPS requests generated by the functions. The system call tracing
mechanism is implemented using the strace utility. The Valve con-
troller is implemented as an independent service that runs on top of
OpenFaaS without requiring any change in the underlying platform.
Further add-ons and improvements can be easily integrated into
Valve by adding the functionalities as vertical services on top of the
underlying platform (e.g., OpenFaaS).

6 EVALUATION
In this section, we evaluate the performance of Valve. We deployed
Valve on a server-class machine with 8-core Intel(R) Xeon(R) CPU
E5620@ 2.40GHz and 12 GBmemory running Ubuntu 16.04.6 LTS
64 bit. Using this server, we created a Kubernetes v1.16.0 cluster
with Docker runtime version 18.09.0 to conduct all our experiments.
We compare the performance of Valve against two baselines – a
standard OpenFaaS deployment (Vanilla) and a language-based in-
formation flow control mechanism (Trapeze) [74]. To ensure the

https://D2.datastore.com
http://cerberhhyed5frqa.fkr84i.win
https://bestboy.top
https://bestboy.top
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Corpus Function Vanilla OpenFaaS OpenFaaS with Valve

Size (MB) Time (s) Size (MB) Time (s)

Hello, Retail!

catalog-builder 101.0 59.19 169.0 (67.33%) 81.71 (28.21%)
catalog-api 105.0 62.91 173.0 (64.76%) 88.49 (40.66%)

purchase-authenticate 101.0 57.81 169.0 (67.33%) 81.61 (41.17%)
purchase-get-price 101.0 58.19 169.0 (67.33%) 96.68 (66.15%)
purchase-authorize-cc 101.0 58.00 169.0 (67.33%) 86.22 (48.66%)
purchase-publish 98.5 38.66 162.0 (64.47%) 55.64 (43.92%)

photos-assign 103.0 56.49 169.0 (64.08%) 82.20 (45.51%)
photos-message 90.3 37.16 161.0 (78.29%) 66.36 (78.58%)
photos-record 103.0 57.16 169.0 (64.08%) 88.19 (55.55%)
photos-receive 108.0 65.08 174.0 (61.11%) 121.93 (87.35%)
photos-success 90.3 37.28 161.0 (78.29%) 60.83 (63.17%)
photos-report 105.0 64.37 173 (64.76%) 91.48 (42.12%)

OpenFaaS store

openfaas-ocr 511.0 105.31 530.0 (3.72%) 118.19 (12.23%)
haveibeenpwned 31.3 53.93 98.5 (214.70%) 60.30 (11.81%)
faas-youtubedl 74.4 23.69 143.0 (92.20%) 48.97 (106.71%)
openfaas-certinfo 29.4 30.22 97.0 (229.93%) 41.60 (37.66%)
facedetect-openfaas 80.8 70.13 142.0 (75.74%) 84.16 (20.00%)
SentimentAnalysis 370.0 51.22 443.0 (19.73%) 86.47 (68.82%)
NodeInfo 64.5 19.82 134.0 (107.75%) 32.99 (66.45%)
DockerHubStats 26.0 40.33 87.6 (236.92%) 55.60 (37.86%)

TAWorkflows

gmail-trigger 603.0 639.35 686.0 (13.76%) 666.66 (4.27%)
slack-notification 112.0 37.28 191.0 (70.54%) 91.22 (144.66%)
test-flow 14.2 29.48 87.2 (514.08%) 80.10 (171.67%)

geolocation-service 114.0 38.71 193.0 (69.30%) 59.21 (52.95%)
update-sheet 131.0 66.45 204.0 (55.73%) 94.43 (42.11%)
location-flow 14.2 30.06 87.2 (514.08%) 77.19 (156.82%)

Table 5: Build Time (MB) and Build Size (s) for Valve as compared to
Vanilla OpenFaaS. Percent overhead is given in parenthesis.

generality of our results, we run each experiment against several
different corpora of serverless applications:
• Hello, Retail! [32] This is an event-driven AWS serverless applica-
tion that leverages AWS services like Lambda, Kinesis, Dynamo
and S3. We base our experiments on Alpernas et al.’s fork of Hello,
Retail! which replaces calls to the AWS S3 and Dynamo databases
with their own data score [74]. This allows us to compare Valve
to their Trapeze system, which is a language-based information
flow control solution [74] system.We present the description of
constituent functions of this application in Table 4.

• OpenFaaS Store Functions [44].OpenFaaS provides a function store
[44] containing community developed serverless functions for
public use which closely resembles our motivating scenario. We
selected 8 functions from this store to include in our evaluation
suite as listed in Table 5.

• Exemplar Trigger-ActionWorkflows.With the growth of IoT, we
envision that trigger-action platforms will move to serverless
platforms due to their support for event triggers and actions [6,
46]. We implemented two proof-of-concept workflows based on
trigger-action rules: 1) an Email-Slack workflow in which the
gmail service (f1) notifies an orchestration function (f2), causing a
slackbot f3 to post an email notification to a slack channel; and 2)
a Location Sheetsworkflow in which a location service (f1) sends
updatesof auser’s location toanorchestration function (f2),which
are then recorded in a Google docs spreadsheet (f3).

6.1 Build Costs
We first measure the pre-deployment cost of building and storing
a function image with Valve. These costs are one-time and primar-
ily incurred by the cloud provider. The build size and built time
for each function corpus are given in Table 5. On average, the in-
crease in image size imposed by Valve is 97%, while the average

increase inbuild time is 51%.Theprimarysourceof theseoverheads is
caused by adding mitmproxy to the container image. This is because
mitmproxy is a mature and trusted software artifact that is consider-
ably more feature-rich than what is strictly needed by our Valve im-
plementation.Valve’s design is ultimately independent of the proxy
used and mitmproxy can be replaced with lightweight alternatives.
While considerable, we note that these overheads are a one-time
cost and that large image sizes are a long standing problem in the
container ecosystem [96]. One possibility for bringing down these
overheads is the use of container debloating techniques, e.g., [96].

6.2 Runtime Costs
We next measure the set of runtime costs imposed by Valve. Un-
like the build overhead, these costs are largely passed on to the
serverless customer (orWorkflowDeveloper) and are therefore of
vital importance. We consider three factors affecting runtime per-
formance: Function Deployment, Function Invocation, and Function
Teardown. Function Deployment measures the time it takes Kuber-
netes to transition the container from the “Container Creating” state
to the “Ready” state. Function Invocation measures the RTT of a
request to the function issued by another host on the local network.
Function Teardown is a measure of the time required to transition
the container from the “Running” state to the “Terminated” state.We
present these results for the Hello, Retail! corpus in Figure 4 and the
OpenFaaS Store corpus in Figure 5, each experiment averaged over
50 repetitions, omitting the similar TAWorkflows results for brevity.

Deployment time is only minimally impacted by the presence
of Valve. With Valve enabled, we measured an average deploy-
ment overhead of just 6.25% . The most critical performance cost,
function invocation time, enjoys similarly modest overheads with
Valve. The average runtime overhead of Valve is just 2.8% per invo-
cation. Valve exhibits fairly constant runtime overhead compared
to Trapeze where overhead varies depending on function internals
as shown in Figure 4b. To achieve transparency, Valve’s flow control
model is intentionally coarse-grained. Compared to Trapeze which
offers flow control at memory-level while being more intrusive, ex-
pensive and onerous for developers, Valve offers lightweight handles
to developers to control functions at the file-access and network-
access level.Valve invocation overhead is dependent on the number
of network requests proxied by the Valve Agent; the worst-case
scenario for our performance would be a function that issues many
serialized network requests. This access pattern could potentially
appear, e.g., in an orchestration function that communicates with
many other functions, but we did not observe it in our tests.

The teardown cost reflects the time required for terminating a
running function. As a result, we observe performance character-
istics similar to deployment costs for both function corpora, with
Valve seldom outperforming vanilla OpenFaaS due to scheduling
artifacts. The average function deletion cost is 2.35% in Valve.

7 RELATEDWORK

Serverless computing attacks. Arbitrary code execution, imperfect
tenant isolation (i.e. VM and function co-location vulnerabilities)
and the ability to gather knowledge about runtimeand infrastructure
are common issues in serverless platforms [92, 101]. Since functions
communicate to different event sources, object stores and integrated
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Figure 4: Performance characteristics of Valve for theHello, Retail! functions as compared to vanilla OpenFaaS baseline and Trapeze.
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Figure 5: Performance characteristics of Valve for theOpenFaaS Store functions as compared to vanilla OpenFaaS baseline.

third-party services, it leads to broader and newer attack surfaces
susceptible to canonical vulnerabilities [47]. For Example, event in-
jection attacks [2, 22, 30] may target the function source code, other
secrets stored in the container [26, 31], or databases associated with
the function. Access control and security misconfigurations (e.g.,
read/write access to object stores accessed by the function, long
timeout, buggy configuration rollout [7]) enables attackers to re-
trieve sensitive informative as part of reconnaissance [53] or launch
denial-of-service (or denial-of-wallet [40, 42]) attacks by exhausting
allocated resource limits and expanding usage bill. Commonvulnera-
bilities and bugs in SDKs, third-party libraries and platform code [19,
25, 51, 54] plague serverless functions. Existing security solutions
[3, 24, 33, 48, 49, 60, 61, 63, 69] each solve somepart of these problems.
Valve adds to the growing set of artilleries against serverless attacks.

Serverless Security Research. Alpernas et al propose Trapeze [74],
a language-based approach to dynamic information flow control.
Trapeze wrap each serverless function in a security shim that inter-
cepts data access from shared data stores, external communication
channels (i.e. Internet), and messages exchanged with other func-
tions. Similar toValve, the shimtracks informationflowandenforces
a global security policy based on a combination of static and dynamic
security labelling (i.e.,G3,G4). However, Trapeze places a greater
burden on developers to correctly define information flow policies
and implement declassification functions, whereas Valve assists
workflow developers in policy specification and employs a transpar-
ent coarser-grained (i.e., function-level) information flowmodel that
does not require declassification (i.e.,G1). Further, Trapeze makes
assumptions about the programming language of the serverless
function, violating goalG2. Trapeze completely forgoes serverless
warm-start performance optimizations and faces higher overheads

thanValve; the fork-optimized Trapeze does not work for some API
calls and requires effort at the external API implementation level to
fix it. We believe that, where applicable, Trapeze is complementary
to Valve in providing robust defense against data breach attacks in
serverless cloud.

Several studies have surveyed the security of different serverless
computing platforms. Baldini et. al. examined several popular plat-
forms and concluded the lack of proper function isolation is a major
problem [75]. Solving this problem is a major driving force of Valve.
Wang et. al. have measured scalability, cold-start latency, instance
lifetime and several other metrics in Google Cloud functions, Mi-
crosoft Azure Functions and AWS lambda [101] . They discovered
that Azure Functions have exploitable placement vulnerabilities and
that the ability to run arbitrary binary code in containers makes
them vulnerable to many kinds of side-channel attacks. However,
they did not suggest defenses to these attacks, which is the central
concern of our work. Some researchers have attempted to formally
model serverless platforms [81, 85], and perform semi-automated
troubleshooting based on log data [91], to ease reasoning about func-
tion behavior. This may aid in the security analysis of functions, but
is orthogonal to the goals of Valve.

Serverless design. Another line of research in the serverless com-
puting domain attempts to improve serverless architectural designs.
Hendrickson et al. address the high memory overhead of storing
paused containers inmemoryand improved loadbalancing to exploit
session, code and data locality [82]. Sock extendsOpenLambda to de-
crease the cold start latencyof the containers to reduce response time
[94]. Sock leverages lightweight linux primitives to replace costly
container initialization mechanisms and process caching, i.e. usage
of common system libraries for all containers to reduce the overall
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initialization cost. However, they admit that their process-caching
methodology has security implications. SAND achieves resource
efficiency by application-level sandboxing by orchestrating func-
tion executions of the same application locally [73]. McGrath et al.
propose metrics to evaluate the execution performance of serverless
platforms [92] and identify hosting arbitrary code in containers on
multi-tenant systems as a potential security problem which calls for
attention. Combining SDN and serverless computing [71, 100] and
serverless execution parallelization [79] to achieve performance im-
provement, better serverless programming models [93], serverless
pricing models [78], serverless analytics optimizations [87, 88, 95]
are active research areas in the serverless paradigm.

8 CONCLUSION
As our understanding of serverless computing (in)security evolves,
it has become clear that many of the threats to FaaS are fundamen-
tally based on violations of information flow. In this work, we have
presented Valve, a generic and transparent solution for dynamic
information flow control. We have demonstrated that Valve can
mitigate common classes of attacks against serverless platforms, and
also assist workflow developers in auditing the information flows
of their web applications, while imposing as little as 2.8% runtime
overhead on function invocation. Valve thus represents a viable
path forward to the integration of information flow enforcement in
serverless platforms.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work is supported
in part by NSF 17-50024 and NSF 16-57534. The views expressed are
those of the authors only.

REFERENCES
[1] 2019. 21% of Open Source Serverless Apps Have Critical Vulnerabilities.

https://www.puresec.io/blog/puresec-reveals-that-21-of-open-source-
serverless-applications-have-critical-vulnerabilities.

[2] 2019. A Deep Dive into Serverless Attacks, SLS-1: Event Injection. https:
//www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/.

[3] 2019. AquaCloudNative Security Platform. https://www.aquasec.com/products/
aqua-container-security-platform/.

[4] 2019. AWS | Twilio Send Text Message. https://serverless.com/examples/aws-
node-twilio-send-text-message/.

[5] 2019. AWS Case Study: Zillow. https://aws.amazon.com/solutions/case-
studies/zillow/.

[6] 2019. AWS lambda. https://aws.amazon.com/lambda/.
[7] 2019. AWSLambdaContainerLifetimeandConfigRefresh. https://www.linkedin.

com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/.
[8] 2019. AWS Lambda Execution Context. https://docs.aws.amazon.com/lambda/

latest/dg/running-lambda-code.html.
[9] 2019. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/dg/

limits.html.
[10] 2019. AWS Lambda Security: Automated SQL Injection Testing.

https://www.puresec.io/blog/automated-sql-injection-testing-of-serverless-
functions-on-a-shoestring-budget-and-some-good-music.

[11] 2019. AWS Serverless Application Repository. https://aws.amazon.com/
serverless/serverlessrepo/.

[12] 2019. AWS Step Functions. https://aws.amazon.com/step-functions/.
[13] 2019. AWS X-Ray: Analyze and debug production, distributed applications.

https://aws.amazon.com/xray/.
[14] 2019. Azure application insights. https://docs.microsoft.com/en-us/azure/azure-

monitor/app/app-insights-overview.
[15] 2019. Azure Durable Functions. https://docs.microsoft.com/en-us/azure/azure-

functions/durable/durable-functions-overview.
[16] 2019. Azure Functions. https://azure.microsoft.com/en-us/services/functions/.

[17] 2019. Azure Monitor: Full observability into your applications, infrastructure,
and network. https://azure.microsoft.com/en-us/services/monitor/.

[18] 2019. CloudWatch Logs Limits. https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html.

[19] 2019. CVE-2019-5736: runc container breakout. https://www.openwall.com/
lists/oss-security/2019/02/11/2.

[20] 2019. DShield.org Suspicious Domain List. https://isc.sans.edu/feeds/
suspiciousdomains_Medium.txt.

[21] 2019. Epsagon: Monitoring and troubleshooting for serverless applications.
https://epsagon.com/.

[22] 2019. Event Injection: Protecting your Serverless Applications. https://www.
jeremydaly.com/event-injection-protecting-your-serverless-applications/.

[23] 2019. Function-as-a-Service Market by User Type (Developer-Centric and
Operator-Centric), Application (Web & Mobile Based, Research & Academic),
Service Type, Deployment Model, Organization Size, Industry Vertical, and
Region - Global Forecast to 2021. https://www.marketsandmarkets.com/Market-
Reports/function-as-a-service-market-127202409.html.

[24] 2019. FunctionShield. https://www.puresec.io/function-shield.
[25] 2019. Gathering weak npm credentials. https://github.com/ChALkeR/notes/

blob/master/Gathering-weak-npm-credentials.md.
[26] 2019. Gone in 60 Milliseconds: Intrusion and Exfiltration in Server-less

Architectures. https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds.
[27] 2019. Google-backed startup’s chat bots turn ads into conversations.

https://www.engadget.com/2018/10/17/adlingo-chatbots-google-120/.
[28] 2019. Google cloud functions. https://cloud.google.com/functions/.
[29] 2019. Google Cloud: Viewing Monitored Metrics. https://cloud.google.com/

functions/docs/monitoring/metrics.
[30] 2019. Hacking a Serverless Application: Demo. https://www.youtube.com/

watch?v=TcN7wHuroVw.
[31] 2019. Hacking serverless runtimes: Profiling AWS Lambda, Azure Functions,

And more. https://www.blackhat.com/us-17/briefings/schedule/#hacking-
serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434.

[32] 2019. Hello, Retail!: Nordstrom Technology open-source project.
https://github.com/Nordstrom/hello-retail.

[33] 2019. Intrinsic: Software security, re-invented. https://intrinsic.com/.
[34] 2019. Introducing Serverless Composition for IBM Cloud Functions.

https://www.ibm.com/blogs/bluemix/2017/10/serverless-composition-ibm-
cloud-functions/.

[35] 2019. IO|pipe. https://www.iopipe.com/.
[36] 2019. Junio-Identity Verification for Today’s Digital World. https:

//go.jumio.com/netverify-ppc-b?utm_source=google&utm_medium=cpc.
[37] 2019. Kubernetes: Production-Grade Container Orchestration.

https://kubernetes.io/.
[38] 2019. Lambda functions for rapid prototyping. https://developer.ibm.com/

articles/cl-lambda-functions-rapid-prototyping/.
[39] 2019. Leadtools:Web Services for Image Processing. https://www.leadtools.com/

sdk/image-processing/web-services.
[40] 2019. Many-faced threats to Serverless security. https://hackernoon.com/many-

faced-threats-to-serverless-security-519e94d19dba.
[41] 2019. Monitor serverless applications. https://dashbird.io/.
[42] 2019. New Attack Vector - Serverless Crypto Mining. https:

//www.puresec.io/blog/new-attack-vector-serverless-crypto-mining.
[43] 2019. OpenFaaS. https://www.openfaas.com/.
[44] 2019. OpenFaaS Function Store. https://github.com/openfaas/store.
[45] 2019. OpenFaaS Triggers. https://docs.openfaas.com/reference/triggers/.
[46] 2019. Openwhisk. https://openwhisk.apache.org/.
[47] 2019. OWASP Serverless Top 10. https://www.owasp.org/index.php/OWASP_

Serverless_Top_10_Project.
[48] 2019. Protego Serverless Runtime Security. https://www.protego.io/platform/

elastic-defense/.
[49] 2019. Puresec Serverless Security Platform. https://www.puresec.io/.
[50] 2019. Realtor.com Case Study. https://aws.amazon.com/solutions/case-

studies/realtor-com/.
[51] 2019. ReDoS Vulnerability in "AWS-Lambda-Multipart-Parser" Node Package.

https://www.puresec.io/blog/redos-vulnerability-in-aws-lambda-multipart-
parser-node-package.

[52] 2019. Schedule Expressions Using Rate or Cron. https://docs.aws.amazon.com/
lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html.

[53] 2019. Securing Serverless: Attacking an AWSAccount via a Lambda Function.
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-
account-via-a-lambda-function/a/d-id/1333047.

[54] 2019. Securing Serverless – by Breaking in. https://www.infoq.com/
presentations/serverless-security-2018.

[55] 2019. SELinux Project. https://github.com/SELinuxProject.
[56] 2019. Serverless framework examples. https://github.com/serverless/examples.
[57] 2019. serverless-image-processor. https://github.com/Mercateo/serverless-

image-processor.

https://www.puresec.io/blog/puresec-reveals-that-21-of-open-source-serverless-applications-have-critical-vulnerabilities
https://www.puresec.io/blog/puresec-reveals-that-21-of-open-source-serverless-applications-have-critical-vulnerabilities
https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/
https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/
https://www.aquasec.com/products/aqua-container-security-platform/
https://www.aquasec.com/products/aqua-container-security-platform/
https://serverless.com/examples/aws-node-twilio-send-text-message/
https://serverless.com/examples/aws-node-twilio-send-text-message/
https://aws.amazon.com/solutions/case-studies/zillow/
https://aws.amazon.com/solutions/case-studies/zillow/
https://aws.amazon.com/lambda/
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://www.puresec.io/blog/automated-sql-injection-testing-of-serverless-functions-on-a-shoestring-budget-and-some-good-music
https://www.puresec.io/blog/automated-sql-injection-testing-of-serverless-functions-on-a-shoestring-budget-and-some-good-music
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/xray/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/monitor/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://www.openwall.com/lists/oss-security/2019/02/11/2
https://www.openwall.com/lists/oss-security/2019/02/11/2
https://isc.sans.edu/feeds/suspiciousdomains_Medium.txt
https://isc.sans.edu/feeds/suspiciousdomains_Medium.txt
https://epsagon.com/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.puresec.io/function-shield
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://www.engadget.com/2018/10/17/adlingo-chatbots-google-120/
https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/monitoring/metrics
https://cloud.google.com/functions/docs/monitoring/metrics
https://www.youtube.com/watch?v=TcN7wHuroVw
https://www.youtube.com/watch?v=TcN7wHuroVw
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://github.com/Nordstrom/hello-retail
https://intrinsic.com/
https://www.ibm.com/blogs/bluemix/2017/10/serverless-composition-ibm-cloud-functions/
https://www.ibm.com/blogs/bluemix/2017/10/serverless-composition-ibm-cloud-functions/
https://www.iopipe.com/
https://go.jumio.com/netverify-ppc-b?utm_source=google&utm_medium=cpc
https://go.jumio.com/netverify-ppc-b?utm_source=google&utm_medium=cpc
https://kubernetes.io/
https://developer.ibm.com/articles/cl-lambda-functions-rapid-prototyping/
https://developer.ibm.com/articles/cl-lambda-functions-rapid-prototyping/
https://www.leadtools.com/sdk/image-processing/web-services
https://www.leadtools.com/sdk/image-processing/web-services
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://dashbird.io/
https://www.puresec.io/blog/new-attack-vector-serverless-crypto-mining
https://www.puresec.io/blog/new-attack-vector-serverless-crypto-mining
https://www.openfaas.com/
https://github.com/openfaas/store
https://docs.openfaas.com/reference/triggers/
https://openwhisk.apache.org/
https://www.owasp.org/index.php/OWASP_Serverless_Top_10_Project
https://www.owasp.org/index.php/OWASP_Serverless_Top_10_Project
https://www.protego.io/platform/elastic-defense/
https://www.protego.io/platform/elastic-defense/
https://www.puresec.io/
https://aws.amazon.com/solutions/case-studies/realtor-com/
https://aws.amazon.com/solutions/case-studies/realtor-com/
https://www.puresec.io/blog/redos-vulnerability-in-aws-lambda-multipart-parser-node-package
https://www.puresec.io/blog/redos-vulnerability-in-aws-lambda-multipart-parser-node-package
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-account-via-a-lambda-function/a/d-id/1333047
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-account-via-a-lambda-function/a/d-id/1333047
https://www.infoq.com/presentations/serverless-security-2018
https://www.infoq.com/presentations/serverless-security-2018
https://github.com/SELinuxProject
https://github.com/serverless/examples
https://github.com/Mercateo/serverless-image-processor
https://github.com/Mercateo/serverless-image-processor


WWW ’20, April 20–24, 2020, Taipei, Taiwan Datta et al.

[58] 2019. (Server)less is more. https://medium.com/tooso/server-less-is-more-
98d4275c37ae.

[59] 2019. Serverless Pixel Tracking Architecture. https://cloud.google.com/
solutions/serverless-pixel-tracking.

[60] 2019. Serverless Security for AWS Lambda, Azure Functions, and Google Cloud
Functions. https://www.twistlock.com/solutions/serverless-security-aws-
lambda-azure-google-cloud/.

[61] 2019. Snyk. https://snyk.io/.
[62] 2019. SQLmap. https://github.com/sqlmapproject/sqlmap.
[63] 2019. Sysdig Secure. https://sysdig.com/products/secure/.
[64] 2019. The Amazon API Gateway Serverless Developer Portal.

https://github.com/awslabs/aws-api-gateway-developer-portal.
[65] 2019. THE DATA BREACH (AMAZON) BUCKET LIST. https:

//digitalguardian.com/blog/data-breach-amazon-bucket-list.
[66] 2019. Thundra: Quickly pinpoint problems in serverless. https:

//www.thundra.io/.
[67] 2019. Understanding Container Reuse in AWS Lambda. https:

//aws.amazon.com/blogs/compute/container-reuse-in-lambda/.
[68] 2019. Using AWS Lambda with Other Services. https://docs.aws.amazon.com/

lambda/latest/dg/lambda-services.html.
[69] 2019. Vandium-node. https://github.com/vandium-io/vandium-node.
[70] 2019. Wayblazer. https://www.wayblazer.ai/facebook-messenger/.
[71] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke, and M. Stein.

2019. Will Serverless Computing Revolutionize NFV? Proc. IEEE 107, 4 (April
2019), 667–678. https://doi.org/10.1109/JPROC.2019.2898101

[72] Gojko Adzic and Robert Chatley. 2017. Serverless Computing: Economic and
Architectural Impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 884–889.
https://doi.org/10.1145/3106237.3117767

[73] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards
High-Performance Serverless Computing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 923–935.
https://www.usenix.org/conference/atc18/presentation/akkus

[74] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,
Thomas Schmitz, and KeithWinstein. 2018. Secure Serverless Computing Using
Dynamic Information Flow Control. Proc. ACM Program. Lang. 2, OOPSLA,
Article 118 (Oct. 2018), 26 pages. https://doi.org/10.1145/3276488

[75] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, and Philippe Suter. 2017. Serverless Computing: Cur-
rent Trends and Open Problems. Springer Singapore, Singapore, 1–20.
https://doi.org/10.1007/978-981-10-5026-8_1

[76] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors.
2010–. mitmproxy: A free and open source interactive HTTPS proxy.
https://mitmproxy.org/ [Version 4.0].

[77] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan,
Elie Bursztein, Michael Bailey, J Alex Halderman, and Vern Paxson. 2017. The
Security Impact of HTTPS Interception. In Proceedings of the 24th ISOC Network
and Distributed System Security Symposium (NDSS’17). San Diego, CA, USA.

[78] Tarek Elgamal. 2018. Costless: Optimizing cost of serverless computing through
function fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 300–312.

[79] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
https://www.usenix.org/conference/atc19/presentation/fouladi

[80] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica. 2009. Above the
clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS (2009).

[81] Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, Fabrizio Montesi, Marco
Peressotti, and Stefano Pio Zingaro. 2019. No More, No Less. In Coordination
Models and Languages, Hanne Riis Nielson and Emilio Tuosto (Eds.). Springer
International Publishing, Cham, 148–157.

[82] ScottHendrickson,StephenSturdevant,TylerHarter,VenkateshwaranVenkatara-
mani, Andrea C. Arpaci-Dusseau, and RemziH. Arpaci-Dusseau. 2016. Serverless
Computation with OpenLambda. In 8th USENIXWorkshop on Hot Topics in Cloud
Computing (HotCloud 16). USENIXAssociation,Denver, CO. https://www.usenix.
org/conference/hotcloud16/workshop-program/presentation/hendrickson

[83] Boniface Hicks, Sandra Rueda, Luke St.Clair, Trent Jaeger, and Patrick
McDaniel. 2010. A Logical Specification and Analysis for SELinux MLS
Policy. ACM Trans. Inf. Syst. Secur. 13, 3, Article 26 (July 2010), 31 pages.
https://doi.org/10.1145/1805874.1805982

[84] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. 2003. Analyzing Integrity
Protection in the SELinux Example Policy. In Proceedings of the 12th Conference

on USENIX Security Symposium - Volume 12 (SSYM’03). USENIX Association,
Berkeley, CA, USA, 5–5. http://dl.acm.org/citation.cfm?id=1251353.1251358

[85] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal
Foundations of Serverless Computing. Proc. ACM Program. Lang. 3, OOPSLA,
Article 149 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360575

[86] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud Programming Simplified: A Berkeley View on
Serverless Computing. arXiv preprint arXiv:1902.03383 (2019).

[87] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral Stor-
age for Serverless Analytics. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18). USENIX Association, Boston, MA, 789–794.
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless

[88] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfef-
ferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for
Serverless Analytics. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427–444.
https://www.usenix.org/conference/osdi18/presentation/klimovic

[89] "Lehvä, Jyri and Mäkitalo, Niko and Mikkonen, Tommi". 2018. Case Study:
Building a Serverless Messenger Chatbot. In Current Trends inWeb Engineering,
Irene Garrigós andManuelWimmer (Eds.). Springer International Publishing,
Cham, 75–86.

[90] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A
mixed-method empirical study of Function-as-a-Service software development
in industrial practice. Journal of Systems and Software 149 (2019), 340 – 359.
http://www.sciencedirect.com/science/article/pii/S0164121218302735

[91] Johannes Manner, Stefan Kolb, and Guido Wirtz. 2019. Troubleshooting
Serverless functions: a combined monitoring and debugging approach.
SICS Software-Intensive Cyber-Physical Systems 34, 2 (01 Jun 2019), 99–104.
https://doi.org/10.1007/s00450-019-00398-6

[92] G. McGrath and P. R. Brenner. 2017. Serverless Computing: Design,
Implementation, and Performance. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW). 405–410.
https://doi.org/10.1109/ICDCSW.2017.36

[93] Dominik Meissner, Benjamin Erb, Frank Kargl, and Matthias Tichy. 2018.
Retro-λ: An Event-sourced Platform for Serverless Applicationswith Retroactive
Computing Support. In Proceedings of the 12th ACM International Conference
on Distributed and Event-based Systems (DEBS ’18). ACM, New York, NY, USA,
76–87. https://doi.org/10.1145/3210284.3210285

[94] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task
Provisioning with Serverless-Optimized Containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 57–70.
https://www.usenix.org/conference/atc18/presentation/oakes

[95] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuf-
fling, Fast and Slow: Scalable Analytics on Serverless Infrastructure.
In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). USENIX Association, Boston, MA, 193–206.
https://www.usenix.org/conference/nsdi19/presentation/pu

[96] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick Mc-
Daniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings of
the 201711th JointMeetingonFoundations of SoftwareEngineering (ESEC/FSE2017).
ACM, New York, NY, USA, 476–486. https://doi.org/10.1145/3106237.3106271

[97] Rich Bowen. 2017. No! Don’t turn off SELinux! https://blog.centos.org/2017/
07/dont-turn-off-selinux/.

[98] Avraham Shulman, Ory Segal, and Shaked Yosef Zin. 2019. Methods for securing
serverless functions. US Patent App. 16/024,863.

[99] Hayawardh Vijayakumar, Guruprasad Jakka, Sandra Rueda, Joshua Schiffman,
and Trent Jaeger. 2012. IntegrityWalls: Finding Attack Surfaces fromMandatory
Access Control Policies. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (ASIACCS ’12). ACM, New York, NY,
USA, 75–76. https://doi.org/10.1145/2414456.2414500

[100] Kailas Vodrahalli and Eric Zhou. [n.d.]. Using Software-defined Caching to
Enable Efficient Communication in a Serverless Environment. ([n. d.]).

[101] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133–146. https://www.usenix.org/conference/atc18/presentation/wang-liang

[102] Zhang Xu, ZhenyuWu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, HainingWang, and Guofei Jiang. 2016. High Fidelity Data
Reduction for Big Data Security Dependency Analyses. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS ’16).
ACM, New York, NY, USA, 504–516. https://doi.org/10.1145/2976749.2978378

[103] Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. 2016. Building
a Chatbot with Serverless Computing. In Proceedings of the 1st International
Workshop on Mashups of Things and APIs (MOTA ’16). ACM, New York, NY, USA,
Article 5, 4 pages. https://doi.org/10.1145/3007203.3007217

https://medium.com/tooso/server-less-is-more-98d4275c37ae 
https://medium.com/tooso/server-less-is-more-98d4275c37ae 
https://cloud.google.com/solutions/serverless-pixel-tracking
https://cloud.google.com/solutions/serverless-pixel-tracking
https://www.twistlock.com/solutions/serverless-security-aws-lambda-azure-google-cloud/
https://www.twistlock.com/solutions/serverless-security-aws-lambda-azure-google-cloud/
https://snyk.io/
https://github.com/sqlmapproject/sqlmap
https://sysdig.com/products/secure/
https://github.com/awslabs/aws-api-gateway-developer-portal
https://digitalguardian.com/blog/data-breach-amazon-bucket-list
https://digitalguardian.com/blog/data-breach-amazon-bucket-list
https://www.thundra.io/
https://www.thundra.io/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://github.com/vandium-io/vandium-node
https://www.wayblazer.ai/facebook-messenger/
https://doi.org/10.1109/JPROC.2019.2898101
https://doi.org/10.1145/3106237.3117767
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3276488
https://doi.org/10.1007/978-981-10-5026-8_1
https://mitmproxy.org/
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://doi.org/10.1145/1805874.1805982
http://dl.acm.org/citation.cfm?id=1251353.1251358
https://doi.org/10.1145/3360575
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
http://www.sciencedirect.com/science/article/pii/S0164121218302735
https://doi.org/10.1007/s00450-019-00398-6
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1145/3210284.3210285
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/3106237.3106271
https://blog.centos.org/2017/07/dont-turn-off-selinux/
https://blog.centos.org/2017/07/dont-turn-off-selinux/
https://doi.org/10.1145/2414456.2414500
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1145/2976749.2978378
https://doi.org/10.1145/3007203.3007217

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Serverless Application Scenario
	3.2 Limitation of existing security tools.
	3.3 Our approach.

	4 Design
	4.1 Threat Model & Assumptions
	4.2 Design Goals
	4.3 Overview
	4.4 Valve Agent
	4.5 Valve controller

	5 Implementation
	6 Evaluation
	6.1 Build Costs
	6.2 Runtime Costs

	7 Related work
	8 Conclusion
	Acknowledgments
	References

