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ABSTRACT
Visual applications – those that use camera frames as part of the ap-
plication – allows for a rich, context-aware experience. The continu-
ing development of mixed and augmented reality (MR/AR) on head-
mounted displays (HMDs) furthers the richness of this experience
by providing users a continuous vision experience, where visual
information continuously provides context, and the real world is
augmented by the virtual. However, these visual applications raise
serious privacy concerns because they can capture private user
information. To understand user privacy concerns in continuous
vision computing environments, we study three MR/AR applica-
tions (augmented markers, augmented faces, and text capture). We
show that in modern mobile visual applications, typical users are
exposed to potential mass collection of sensitive information.

To address such deficiencies, we develop a framework that pro-
vides resource isolation between user information contained in
camera frames and application access to the network. We imple-
ment the design as a proof of concept on the Android operating sys-
tem and demonstrate its performance and usability with a modern
state-of-the-art augmented reality library and several augmented
reality applications. By comparing the applications from our case
study with modified versions which better protect user privacy,
results show that our design efficiently protects users against data
collection in MR/AR applications with less than 0.7% performance
overhead.

CCS CONCEPTS
• Security and privacy → Mobile platform security.
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Figure 1: Camera frames in MR/AR often contain sensitive
information (e.g. a credit card) which are vulnerable to col-
lection by the application developer.

1 INTRODUCTION
As mobile computing evolves, its applications on HMDs shift to in-
clude a broader and deeper level of functionality, from image-guided
minimally invasive procedures with Microsoft HoloLens [18] to
instant social media post with Snap Spectables [7]. The growth of vi-
sual perception applications on mobile devices, which include those
that utilize the on-device camera to enable rich user experiences,
such as photography tools, social media sharing applications, and
mixed and augmented reality experiences, allows for new lifestyles
and opportunities.

However, visual applications raise serious privacy concerns and
incur new challenges to protect user privacy because visual appli-
cations often contain private and sensitive user information that
can be utilized maliciously by application developers, such as the
credit card information accidentally captured in surroundings at
fine level of detail. Even though mobile operating systems, e.g., An-
droid OS or iOS, are equipped with permission systems, they still
fail to protect user privacy in various scenarios, as developers can
invalid them easily by mixing app code with non-trustworthy code
such as advertisement libraries [2]. Wearable MR/AR applications
are particularly vulnerable because application developers have un-
restricted continuous access to sensitive visual information without
transparency as to how the visual information is used [3, 5, 16].

We conduct a case study around three MR/AR applications run-
ning on the ARCore framework [11] which is one of the commercial
platforms to provide environmental understanding, motion track-
ing, and light estimation for many MR/AR applications. The appli-
cations are augmented markers, which renders 3D objects above the
markers (as shown in Figure 1); augmented faces, which adds effects
to users’ faces; and text capture, which digitalizes text seen through
the camera. We find that in these scenarios private user data are
vulnerable to collection by the application developer. While

Session 1: Emerging Applications and Systems for Wearables  WearSys ’19, June 21, 2019, Seoul, Korea

23

https://doi.org/10.1145/3325424.3329659
https://doi.org/10.1145/3325424.3329659


providing a seemingly benign user experience, these applications
may include hidden functionality to send visual information to a
local server when a marker, a face, or a text is detected accordingly.
The threat model we address in this work is demonstrated by these
applications. We design for cases in which application developers
can obtain sensitive visual information from the user and collect
it off-device. We assume that the operating system is trusted and
the developer does not utilize covert channels of communication,
e.g., communication between two entities by manipulating shared
resources [19].

Privacy concerns on modern computing systems, including inap-
propriate data collection in MR/AR applications, have been actively
discussed in recent years. Related works address these privacy
concerns by taint-tracking and controlling information flow [8–
10, 14, 22] or adding an intermediate layer to preprocess frames
and filter out sensitive visual information [4, 12, 20, 21]. However,
they add inhibitive complexity and performance overhead which
limits their practicality for real-world MR/AR applications.

We propose a MR/AR-specific development framework that pro-
vides resource isolation between user information contained in
camera frames and application access to the network such that
malicious applications developers cannot collect them off-device.
We aim to raise barriers against visual information collection by
guiding application development and enforcing information flow
policies. Our framework is designed to protect against visual in-
formation leaks at the highest level of granularity with the most
visibility – application shared resources. We also focus on developer
freedom by not locking the developer into one vision framework
or library. This is practical for actual MR/AR applications, which
use a variety of computer vision platforms for visual computing,
including in-house variations.

We evaluate our framework in the Android environment. How-
ever, the principles we proposed can also be applied to other plat-
forms such as Windows because applications running on it are also
in one process. By monitoring network traffic using the Android
Studio profiler and frame rate reported by ARCore, results show
that our framework effectively prevents malicious network access
with negligible performance overhead (less than 0.7%).

We make the following contributions.

• We prove that MR/AR applications running on current mo-
bile operating systems are vulnerable to data collection by
malicious application developers.

• We introduce a framework to effectively isolate device cam-
era frames from the network.

• We demonstrate that our framework can protect MR/AR
application users against data collection in real-time with
negligible overhead.

2 RELATEDWORK
Information flow control Krohn et al. introduced the Flume sys-
tem to allow safe interaction between conventional and DIFC-aware
(Decentralized Information Flow Control) processes [14]. Enck et
al. presented TaintDroid to identify and protect data leakage via
untrusted applications [9]. Fernandes et al. introduced FlowFence
to guarantee that sensitive data is only processed within designated
functions that run in FlowFence-provided sandboxes [10]. Roy et

al. presented Laminar which implements and further optimizes
DIFC for program objects and OS resources [22]. Efstathopoulos
et al. used Asbestos labels to isolate user data for information flow
control [8]. However, each of these approaches trades performance
for security which is impractical for performance-sensitive applica-
tions such as those in the MR/AR domain. Our framework utilizes
a domain-specific approach that significantly restricts information
flow from the camera to the network but with negligible overhead.
Protection of visual data Jana et al. presented the Darkly system
which hides visual information from the developer by using opaque
handles to operate on rather than the actual camera frame [12].
Roesner et al. introduced a framework that has a granularity to
manage objects in the sensing streams [21]. Lebech et al. intro-
duced Arya system to secure the rendering of AR applications [15].
Aditya et al. presented the I-Pic platform for policy-compliant im-
age capture [4]. Lehman et al. developed PrivacyManager to help
developers control malicious functionalities in AR applications [17].
Raval et al. proposed the MarkIt framework to allow users to specify
and enforce fine-grained control over video feeds [20]. All of these
systems require an intermediate layer to process visual information
before the policies are applied, which allows for varying privacy
granularity, but at the cost of complexity and overhead. Designing
for a threat model which designates all visual information as sen-
sitive removes the need for visual processing as part of the policy
enforcement process. Removing the intermediate visual processing
layer improves performance and removes complexity.
Policy Enforcement Jia et al. proposed an approach to enforce
information flow control policies at runtime [13]. Tuncay et al.
introduced Cusper to allow applications to change permissions
dynamically [23]. ComDroid analyzes intent statically [6]. Laminar
enforces the security policies at runtime [22]. The design of our
framework focuses on application-level measures to protect visual
data, but will require a static- or dynamic-analysis in order to en-
force the design policies at each stage of the application lifetime.
We will address this in our future work.

3 BACKGROUND
3.1 Android Permission System Overview
Each application runs in a sandbox with a unique process
identity. The Android security model attempts to protect user pri-
vacy by requesting and granting permissions at the system level,
whether within an application sandbox or between different sand-
boxes. Within the sandbox, an application is required to request per-
missions before it can access potentially sensitive information [1].
For instance, an approval request will prompt to the user when the
application requests access to the camera, the file system, or the
network; all sources of potentially sensitive data. Outside the sand-
box, permissions can be customized and checked if the application
needs to interact with other applications. Similarly, no data access
between applications will be granted if the permission request is
declined.
Process-level security enforcement has its limitations.As each
application runs as a separate process, all resources within the ap-
plication are shared and can be accessed as a single shared portion
of memory by different parts of the application. As shown in Fig-
ure 2a, developers can collect frames easily through network access.
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Application Threat
Augmented markers Send frames when markers are detected
Augmented faces Send frames when faces are detected
Text capture Send text when texts are captured

Table 1: Three threat demonstration applications we studied
to understand user privacy concerns in continuous vision
computing environments.

Shared resources enable a simplified development process while
maintaining the fundamental benefits of the application sandboxing
model. Under the current Android permission system, once the user
has granted the access to a permission the application has access
to all of the capabilities the permission enables, without any limita-
tion. Permission is not requested again through the lifetime of the
application install unless the user manually revokes it via system
settings. For MR/AR applications in particular, camera data often
contains sensitive information such as a person’s face or objects in
surroundings. Exposure to sensitive information increases with use
of the application; thus, an application with continuous access to
the camera is potentially subjected to many instances of sensitive
information each day. An untrusted application can with relative
ease aggregate the data and secretly send them over the network
for further inference. The current process-level protections on An-
droid are incapable of protecting the user against this type of data
collection.

3.2 Threats in MR/AR Applications
We classify any application that collects camera data as a threat to
both user privacy and user security because the information ob-
tained from the camera is always classified as potentially sensitive.
In modern mobile systems, any collection of camera information –
incidental or malicious – is in the best case a privacy breach and
in the worst a security breach. The unrestricted access to sensitive
information that applications can obtain in this manner is con-
trary to the standard mobile computing model designed around the
principle of least privilege [1]. In addition, users are not aware of
data transferred between the device and the network. The Android
permissions model currently presents a single permission dialog to
the user when camera access is requested. This gives the applica-
tion access to capture and record camera information even when
the application is in the background. Requesting permission for
internet access is declared in the application manifest file, but is
automatically granted to the user at install time. With these two
permissions granted, an application is able to present a perceived
experience to users, perhaps providing them with reasons to accept
the permission to access the camera, and without user knowledge
transfer camera information over the network.

Our threat demonstration applications shwon in Table 1 use the
ARCore framework to present common vision use cases to the user
via augmented markers, augmented faces, and text capture, given a
situation in which camera information is continuously captured.
On each of the three applications, the user is presented with a per-
mission confirmation for the camera the first time the application
is opened. In the augmented scenarios, the application shows the
user a 3D object rendered over the real world. In the text capture

application, any text detected in the camera view is digitized for
further use. Each of these applications contain application code,
however, that aggregates camera frames that are likely to contain
sensitive information. Each time a face or marker is detected with
the augmented faces and augmented markers applications, a photo
of the face or marker is sent over the network to a private server. In
the text capture application, all captured text is streamed to a pri-
vate server. We are able to demonstrate that these applications are
vulnerable to context-sensitive data collection, as shown in Figure 1
– where the credit card information is collected in the augmented
marker application.

4 DESIGN & IMPLEMENTATION
Our proposed framework is designed around the principles of re-
source isolation and unidirectional data flow. We implement
our framework on the Android operating system as an application
library written in Java and Kotlin.

4.1 Resource Isolation
We require developers to separate the part of the application that
requires network access from the rest of the application. Each part
of the application runs in its own distinct process. Moving network
access into a separate process from camera access provides an added
layer of protection for sensitive information in AR and MR apps.
We call these two processes the camera process and the network
process, as shown in Figure 2b. The camera process manages the
main AR/MR experience, and is denied permission to access the
network. It captures camera frames, operates on them, and renders
the experience to the user. The camera process also manages the
user interface and input of the application. Network communica-
tion is accomplished via the network process and information is
then transmitted to the camera process. Information transferred
may be a downloaded user profile or new 3D models for example.
The external filesystem is also a vulnerability because the camera
process can write sensitive information to the filesystem and the
network process can read from it; we mitigate this by restricting
external filesystem access to only the network process. Separation
of resources introduces the need for inter-process communication
(IPC), which can be computationally expensive, but we found that a
typical AR/MR application requires minimal communication in this
manner in order to remain performant and maintain a real-time
vision-based experience.

4.1.1 Implementation. We implement a Receiver module for the
camera process and a Transmitter module for the network pro-
cess. The Receiver contains the permission definition specific to
the camera process, a data-receiver registration API, and a prede-
fined inter-process capable service to handle incoming messages.
The transmitter module includes the permission definition specific
to the network process, a data-sending API, and a package-local
foreground service to send messages in the background. Each li-
brary module conducts runtime permissions queries via the system
PackageManager before conducting IPC, blocking the developer
from breaking framework permission requirements via runtime
permission requests or compile-time permission additions. If a per-
mission query detects a policy breach, a permission configuration
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(a) In a traditional application, resources are shared in one ap-
plication process. Thus, developers are able to collect camera
frames easily through network access.
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(b) In our framework, the camera process cannot access the
network 1○, the network process cannot access frames 2○, and
information flow is unidirectional 3○.

Figure 2: Our proposed framework augments traditional visual information protection by separating the application into a
camera process and a network process with three information flow policies introduced 1○ 2○ 3○.

exception is thrown by the framework and the IPC is cancelled. A
more robust solution is discussed in section §5.3.

4.2 Unidirectional Data Flow
Our framework enforces a unidirectional flow of data from the
network process to the camera process. A unidirectional data flow
policy of this type gives the sending process – the network process
– freedom to communicate arbitrarily large data to the receiving
process – the camera process – while trusting the operating system
to handle the potential for backchannel leaks. Unidirectional data
flow is achieved via platform-supported inter-process communica-
tion. Because the system is a trusted part of the threat model, any
backchannel communication such as acknowledge signals coming
from the receiver are considered contained and therefore benign.
With unidirectional data flow in place, the camera process is for-
bidden from uploading to the network and the network process is
forbidden from obtaining sensitive visual information.

4.2.1 Implementation. Our proposed framework uses a bound ser-
vice to achieve policy-defined unidirectional data flow. The Android
Binder framework, an IPC mechanism at the system level, supports
inter-process message passing and remote procedure calls. We de-
fine a service ReceiverService in the Receiver module that exposes
an API to allow remote processes to pass data into it. ReceiverSer-
vice is then able to transfer that information to the Receiver object
and then back to the application’s registered receivers. We also
define TransmitterService, a service used to initiate network-to-
camera transactions in the background. The network application
binds locally to TransmitterService via the Transmitter object and
initiates a transaction. The transaction process is managed by the
framework and the developer is not required to understand the
implementation details to utilize the framework API.

4.3 Policy Enforcement
In order for our framework to function, three core policies are
introduced. First, the camera process must not have access to make
network calls. Second, the network process must not have access

to the camera frame or anything inferred from it. Third, the flow of
information between the two processes must only be from network
to camera and never the other way. Each policy must be enforced
on top of the camera process and the network process, as shown in
Figure 2b.

4.3.1 Implementation. We apply the existing operating system
permissions model to isolate the camera process and the network
process by granting proper permissions to the camera process and
the network process, relying on the operating system to conduct
permission enforcement. In other word, the camera process is re-
stricted from network access, and the network process is restricted
from the camera. An application developed under our framework
policies that attempts to bypass permissions restrictions will not
be able to transact data from the network process to the camera
process which is the main application. In addition, the camera pro-
cess will not be able to bind to the TransmitterService, because
it is not externally available. In order to meet our framework’s
requirements, the developer must separate code to be run in the
camera process from code to be run in the network process. We
use a platform-enforced method of inter-process communication
to guarantee the the flow of information is only from network to
camera. The trusted operating system acts as a mediator between
the two processes and backchannel communication is limited by
system constraints. We prevent the similar types of communication
in the opposite direction by hiding the network process transmitter
from the camera process, isolating the network process from bound
execution, and predefining the transaction API between processes.
The camera process is installed without the metadata required to
identify the network process. Therefore, the network process is
effectively hidden from being accessed externally. We remove the
availability of service binding from the network process so that
other processes are not able to trigger it. We also define a simple
transaction API between services to enforce these requirements
for the application developer. Our implementation explores how
policy enforcement might be carried out at the application-level.
System-level integration is discussed further in section §5.3.
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4.4 Limitations/Challenges
With unidirectional information flow enabled and enforced, there
are several limitations from the strict resource isolation. For ex-
ample, in this model, visually-triggered network access is strictly
prohibited. Designs should explore the potential for adding visual
elements that trigger network events, such as an augmented reality
download button. Furthermore, a unidirectional design limits users
to engage in multi-user experiences, which also require upstream
network access. We hope further research in the field delves deeper
into providing more meaningful solutions.

5 EVALUATION
We evaluate our proposed framework on a Samsung Galaxy S8
phone running Android 8.0.0. We run the same augmented reality
applications as we discussed in the background (§3) – an augmented
markers application, an augmented faces application, and a text
capture application. These applications are vulnerable against mali-
cious data collection. The demo applications are implemented using
the ARCore platform, but our framework is designed with flexibility
in mind, and can be used with other native MR/AR platform tools.

We measure network traffic to demonstrate isolation efficiency
and frame rate to show the potential overhead of the framework.
Network traffic is measured according to the Android Studio pro-
filer which provides a plot of network traffic over time for the
selected package. Frame rate is measured according to the frame
delta reported by ARCore’s Scene.OnUpdateListener callback.
Our analysis requests a frame delta for each frame at a microsec-
ond granularity and writes it to an internal cache file. The final
frame-rate is averaged across more than 1000 samples.

5.1 Results
Preventing data collection frommalicious application devel-
opers. Network usage is tracked over an application session three
minutes long via the Android Studio profiler. Results in Figure 3a
shows that a traditional application is able to regularly transmit
data, in this case at an average of 1 kilobyte per second. When our
implementation is integrated, however, results in Figure 3b shows
that application’s network usage remains at zero for the entire us-
age period of the application. Our framework effectively prevents
data collection from malicious application developers
Performance overhead. Over an application usage period of 1000
frames, we report the average frame rate in milliseconds. In detail,
results in Figure 4 show that our framework only causes a 0.27%
(from 33.38ms to 33.47ms), 0.68% (from 36.70ms to 36.95ms), and
0.03% (from 41.26ms to 41.27ms) increase in frame rate, accord-
ingly, in the augmented markers application, the augmented faces
application, and the text capture application. It is clear that the
required receiver and transmitter services and the associated IPC
in our proposed framework slightly decrease the frame rate but the
application remains performant. The change in frame rate is not
significant enough to merit a noticeably different user experience.
Our framework does not incur noticeable performance overhead.

5.2 Impact
We introduce a framework design that can protect private user
visual data in MR/AR applications at a low cost. An end-to-end

(a) The marker detection threat demonstration applica-
tion generates consistent network traffic.

(b) The same application generates zero network traffic,
confined by our proposed framework.

Figure 3: Our framework effectively prevents malicious net-
work access, i.e., no frame is collected.
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Figure 4: Frame rate is similar across all tested applications,
with and without framework integration.

implementation of the suggested design has the potential to pro-
tect billions of users’ visual information, as continuous MR/AR
experiences are becoming more and more popular. Our proposed
framework will involve building a trusted platform and necessary
tools for application developers to work with. We anticipate that
our work will build trust between MR/AR application users and
MR/AR application developers. In addition, our proposed frame-
work opens doors for new research into not only the limited types of
applications discussed, but for applications which require complex
application-network interaction, such as multi-user experiences
or applications which tightly couple user interface elements and
network activity.

5.3 Future work
Operating system integration and developer tools We have
demonstrated that resource isolation can protect users against mali-
cious data collection. However, the current implementation is real-
ized by modifying code at the application level. To ease the burden
of the developers, we plan to integrate the introduced framework
into the Android OS. This will provide developer tools to enhance
the process, including IDE integrations with static analysis feed-
back, a public API to interact with the system-level framework from
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within an application, and dynamic information flow analysis to
validate policy enforcement.
Framework certification model In the current implementation,
we do not address how to strictly enforce the proposed policies in
the Android OS, but instead trust the system to manage the majority
of policy enforcement. To verify that applications are following
our proposed policies, we will explore choices for implementing
permission enforcement at application install-time and notify the
user whether the requested application observes the framework’s
requirements.

6 CONCLUSION
As MR/AR technology matures, continuous visual information will
allow new application categories to develop but with rising privacy
concerns. Providing frameworks like the one presented in this
work will allow users protection against malicious applications
that collect sensitive information. Sensitive information is best
protected by restricting its use to the device, as once it is available
to the network a high level of trust is required between the user
and the application developer. User privacy will drive the growth of
MR/AR as practical technologies; as users become more confident
in the protection of their information, they are more likely to adopt
new technology.
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