
FlowFence:	Practical	Data	Protection for	
Emerging	IoT Application	Frameworks

Earlence	Fernandes,	Justin	Paupore,	Amir	Rahmati,	Daniel	Simionato,	
Mauro	Conti,	Atul	Prakash

USENIX	Security	Symposium
11	August	2016



Emerging	IoT App	
Frameworks

Wearables/Quantified	Self

Connected	Healthcare

Smart	Homes 2



Consumer	
App

• Unlock	door	if	face	is	recognized
• Home-owner	can	check	activity	

from	Internet

• App	needs	to	compute on	
sensitive	data to	provide	
useful	service

• But	has	the	potential to	leak
data

3

Publisher	of	
Sensitive	Data

Sink

Source

Sink

Fernandes	et	al.,	Security	Analysis	of	Emerging	Smart	Home	Applications,	S&P	2016



How	can	we	enable	apps	to	compute	on	
the	sensitive data	the	IoT generates	while	

mitigating	data	abuse?



Existing	IoT frameworks	only	have	permission	
based	access	control

Android	Sensor	API

Google	Fit	API

Smart	home	API

• Permissions	control	what data	an	
app	can	access

• Permissions	do	not control	how
apps	use data,	once	they	have	
access

[Smart	Homes]

[Wearables]

[Quantified	Self]

5

e.g.,	capability.lockCodes in	SmartThings	(pincodes),	
FITNESS_BODY_READ scope	in	Google	Fit	(heart	rate)



Instruction-Level	Flow	Analysis	Techniques

6

Dynamic	Taint	Tracking
+	Fine	granularity
+	No	developer	effort
- High	computational	overhead
- May	need	special	h/w	for	acceleration
- Implicit	flows	can	leak	information
- Limited	OS/Language	flexibility

Static	Taint	Tracking
+	Fine	granularity
+	No	developer	effort
- Implicit	flows	can	leak	information
- IPC	and	async.	code	can	leak	information

IoT devices	(and	hubs)	have	
constrained	hardware

OS	and	Language	Diversity;	
[Supports	Rapid	Development]

Fundamental	Trigger-Action	
Nature	of	IoT apps	=	Lots	of	
async.	code



FlowFence
Flow-control	is	a	first-class	primitive

7

FlowFence
• Support	of	diverse	publishers	and	consumers of	

data,	with	publisher	and	consumer	flow	policies
• Allows	use	of	existing languages,	tools,	and	OSes

Language-based	flow	control
• Restructure	apps to	obey	flow	rules
• Developer	declares	flows

Label-based	flow	control
• Component-level information	tracking
• Flow	enforcement	through	label	policies +

=



FlowFence Primitives	–
Quarantined	Modules	and	Opaque	Handles

8

Compute	Features

Bitmap

Features	of	Bitmap

Compute	Features
Quarantined	Module

Bitmap,	Taint_Bitmap

OPAQUE_HANDLE(Features	of	Bitmap)

• Submit a	computation	that	runs	in	a	sandbox

• All	sensitive	data is	available	only	in	sandboxes

• The	computation	runs	with	
the	rights	to	access	sensitive	
bitmap	data

sandbox



FlowFence Primitives	–
Quarantined	Modules	and	Opaque	Handles

9

Compute	Features
Quarantined	Module

Bitmap

OPAQUE_HANDLE(Features	of	Bitmap)

sandbox

Trusted	Sink

• Quarantined	Modules	can	also	access	FlowFence-provided	Trusted	Sinks
• Trusted	Sinks	check	the	taint	labels	of	the	caller	against	a	flow	policy



Face	Recognition	App	Example

10

Door.Open()

Main	Program M_features

M_report_recog

bitmap

features
bitmap

features

door	state
• M_features:	Take	bitmap	as	input	

and	compute	feature	vectors

• M_report_recog:	Take	feature	
vectors,	lookup	DB	of	authorized	
faces,	unlock	door	if	face	present;	
Report	door	state

X



FlowFence – Refactored	App

11Door.Open()

Main	Program
(not	a	QM) QM_features

QM_report QM_recog

Tc

Trusted	API	(Sinks)

H1(F(Dc))

Dc,	Tc

H1(F(Dc))
Ds,	Ts

Ts Tc	U	Ts

Ds,	Ts
H1(F(Dc))

Tc	→ Door.Open
Ts → Door.Open

Ts → Internet



Taint	Labels	and	Flow	Policies

12

H1 {T1,	T2, …} F(D1)

com.camera.publisher Taint_Camera

App_ID Label_Name

{	
Taint_Camera → UI,
Taint_HeartR → Internet
}

Example	Policy

• App_ID – unique	application	identifier	on	the	underlying	OS
• Label_Name – well-known	string	that	identifies	the	type	of	data



Publisher	and	Consumer	Flow	Policies

13

Publisher	Policy Consumer	Policy

D1	→ S1

D1	→ S2

D1	→ S1

D1	→ S3D1	→ S1

Automatically	Approved

Prompt

{	Publisher;
Taint_Camera → UI
}

{	Consumer;
Taint_Camera → Door.Open
Taint_DoorState → Door.Open
Taint_DoorState → Internet
}



Data	Sharing	Mechanisms	in	Current	
IoT Frameworks

• Polling	Interface
• App	checks	for	new	data

• Callback	Interface
• App	is	called	when	new	data	available

• Device	Independence
• E.g.,	many	types	of	heart	rate	sensors	
produce	“heart	beat”	data
• Consumers	should	only	need	to	specify	
“what” data	they	want,	without	specifying	
“how”

14

Android	Sensor	API

Google	Fit	API

Smart	home	API
[Smart	Homes]

[Wearables]

[Quantified	Self]



Key-Value	Store	–
Polling	Interface/Device	Independence

15

QM_1

T1

CAM_BITMAP QM_2

T1
T1

write(…) read(…)

Declared	outside	a	QM

Data

• Each	app	gets	a	single Key-Value	Store
• An	app	can	only	write	to	its	own Key-Value	Store
• Apps	can	read	from	any	Key-Value	Store
• Keys	are	public	information because	consumers	need	to	know	about	them



Event	Channels	–
Callback	Interface/Device	Independence

16

QM_1

T1

Channel_Cam

Channel_2

QM_2

T1
QM_3

T1

fireEvent(…)

subscribe(QM_2,Channel_Cam)

Declared	outside	a	QM

Data

Data

• Apps	can	declare	statically	in	code,	their	intended	channels
• Only	the	owner of	a	channel	can	fire	an	event
• Channel	name	is	public	information



FlowFence Implementation

• IoT Architectures
• Cloud
• Hub

17

“Hub”

• isolatedProcess =	true	for	sandboxes
• Supports	native	code



Evaluation	Overview
• What	is	the	overhead	on	a	micro-level	in	terms	of	computation	and	
memory?

18

• Can	FlowFence support	real	IoT apps	securely?
Ported	3	Existing	IoT Apps: SmartLights,	
FaceDoor,	HeartRateMonitor

Required	adding	less	than	140	lines	per	
app;	FlowFence isolates	flows

• What	is	the	impact	of	FlowFence on	macro-performance?
FaceDoor Recognition	Latency 5%	average	increase

HeartRateMonitor Throughput 0.2	fps	reduction	on	average

SmartLights end-to-end	latency +110	ms on	average

Per-Sandbox	Memory	Overhead 2.7	MB

QM	Call	Latency 92	ms

Data	Transfer	b/w	into	Sandbox 31.5	MB/s

Comparable	to	IoT device	ops	over	wide-
area-network,	e.g.,	Nest,	SmartThings

Nest	cam	peak	bandwidth	is	1.2	Mb/s



Porting	IoT Apps	to	FlowFence

19

App Data Security	Risk Original	LoC FlowFence LoC Flow	Request

SmartLights Can	leak	location	
information 118 193 Loc → Switch

FaceDoor Can	leak	images	
of	people 322 456

Cam	→ Lock,	
Doorstate → Lock,
Doorstate → Net

HeartRateMon Can	leak	images	
and	heart	rate 257 346 Cam→ UI

SmartLights,	FaceDoor – 2	days of	porting	effort	each,	HeartMon – 1	day of	porting	effort



Macro-performance	of	Ported	Apps

20

SmartLights End-To-End	Latency

Baseline 160	ms (SD	=	69.9)

FlowFence 270	ms (SD =	96.1)

FaceDoor Recognition	Latency	
(612x816	pixels)

HeartRateMon Throughput

Throughput	w/o	
Image	Processing 23.0	(SD=0.7)	fps 22.9	(SD=0.7)	fps

Throughput	w/	
Image	Processing 22.9	(SD=0.7)	fps 22.7	(SD=0.7)	fps

Baseline 811	ms (SD	=	37.1)

FlowFence 937	ms (SD	=	60.4)

FaceDoor Enroll	Latency



Summary
• Emerging	IoT App	Frameworks	only	support	permission-based	access	control:	
Malicious	apps	can	steal	sensitive	data	easily
• FlowFence explicitly	embeds	control	and	data	flows	within	app	structure;	
Developers	must	split	their	apps	into:
• Set	of		communicating	Quarantined	Modules with	the	unit	of	communication	being	
Opaque	Handles	– taint	tracked,	opaque	refs	to	data

• Non-sensitive	code	that	orchestrates	QM	execution
• FlowFence supports	publisher	and	consumer flow	policies	that	enable	building	
secure	IoT apps
• We	ported	3 existing	IoT apps	in	5	days;	Each	app	required	adding	<	140	LoC
• Macro-performance	tests on	ported	apps	indicate	FlowFence overhead	is	
reasonable:	e.g.,	4.9%	latency	overhead to	recog.	a	face	&	unlock	a	door

21



22

FlowFence:	Practical	Data	Protection	for	Emerging	IoT
Application	Frameworks

https://iotsecurity.eecs.umich.edu Earlence	Fernandes

• Emerging	IoT App	Frameworks	only	support	permission-based	access	control:	
Malicious	apps	can	steal	sensitive	data	easily
• FlowFence explicitly	embeds	control	and	data	flows	within	app	structure;	
Developers	must	split	their	apps	into:
• Set	of		communicating	Quarantined	Modules with	the	unit	of	communication	being	
Opaque	Handles	– taint	tracked,	opaque	refs	to	data

• Non-sensitive	code	that	orchestrates	QM	execution
• FlowFence supports	publisher	and	consumer flow	policies	that	enable	building	
secure	IoT apps
• We	ported	3 existing	IoT apps	in	5	days;	Each	app	required	adding	<	140	LoC
• Macro-performance	tests on	ported	apps	indicate	FlowFence overhead	is	
reasonable:	e.g.,	4.9%	latency	overhead to	recog.	a	face	&	unlock	a	door



FlowFence Primitives	–
Quarantined	Modules	and	Opaque	Handles

23

Quarantined	
Module

OpaqueHandleT (data)(data,	T)

• An	Opaque	Handle	does	not	reveal
information	about:
• Raw	Data
• Data	Type
• Taint	Label
• Data	Size
• Exceptions
to	non-QM	code

• A	developer-written Quarantined	
Module	(QM)	runs	in	a	sandbox and	
computes	on	sensitive	data

• Sandbox	controls	the	ways	in	which	
data	can	enter	and	exit;	FlowFence
offers	Key-Value	Store	and	Event	
Channels for	data	sharing

Trusted	Sink



Over-tainting

• Poor	app	decomposition	
• Developer	should	refactor	app	to	more	accurately	reflect	flows
• FlowFence only	taints	QMs;	not	complete	app	code

• Poison	Pill	attacks	due	to	malicious	publisher
• Publishers	must	define	Taint	Bound	TMc whenever	a	KV	store	or	event	
channel	is	created	for	that	store	or	channel
• Publishers	cannot	add	taints	beyond	TMc
• Consumers	can	check	the	taint	bound,	and	then	decide	whether	they	want	to	
interact	with	that	publisher
• TMc cannot	be	modified	once	set

24



Side	Channels

• Best	effort	at	closing	some	side	channels	(e.g.,	KV	store	keys	and	
event	channel	names	which	are	declared	outside	a	QM	at	install	
time),	but	we	do	not	handle	all	side	channels

• For	example,	time	to	return	handle	can	be	modulated	by	sensitive	
data
• Can	make	QMs	return	immediately	and	then	execute	async.	w.r.t.	caller
• Similar	to	LIO	[61]
• Timing	channels	can	also	be	bounded	using	predictive	techniques	[72]

25



Challenges	in	Applying	Taint-based	Flow	
Control

Implicit	Flows	
[Security]

Time/Space	Overhead
[Efficiency]

Concurrency	Attacks
[Security]

New	Languages/No		
Rapid	Dev.	With	Tools
[IoT-specific,	Practicality]

Diverse	Producers/Consumers
[IoT-specific,	Practicality,	Security]

26

TaintDroid,	DTA++,	
DyTAN,	…

Amandroid,	
FlowDroid,	…

Jif,	JFlow,	…



Existing	Problems	while	applying	Dynamic	&	
Static	Flow	Analysis

27

if (sensitive_data == 0x1) {
var = ‘A’

} else if (sensitive_date == 0x2) {
var = ‘B’

} Implicit	Flows	[3]

Specialized	hardware	for	
acceleration	[2]

Time/Space	Overhead	[1]

Miss	flows due	to	multithreading/events	[4]

[1]	Paupore	et	al.,	HotOS’15
[2]	Ruwase et	al.,	SPAA’08
[3]	Sarwar et	al.,	SECRYPT’13
[4]	Myers	et	al.,	POPL’99

subscribe(dev, callback)



IoT-specific	Challenges	in	applying	
Dynamic/Static	Information	Flow	Analysis

• Asynchronous,	multithreaded	and	event-based	environment

• Diverse	Publishers	and	Consumers	(data	labels	not	known	apriori)

• OS	and	Language	diversity

28

subscribe(dev, callback) Language	based	techniques	may	not	apply	directly

We	don’t	know	which	devices	are	present	in	any	given	
IoT configuration	(and	hence	which	types	of	data)

Some	techniques	take	advantage	of	
OS/Language	structure



Existing	and	IoT-specific	problems	with	applying	
Dynamic/Static	Instruction-level	Flow	Analyses

• Instruction-level	Taint	Tracking
• Tainting	app	code	or	OS	leads	to	computational	and	space	overhead [1]	– IoT devices/hubs
are	often	constrained/low-powered	without	special	hardware

• Requires	knowledge	of	taint	labels	beforehand	– IoT has	diverse	device	types;	We	do	not	
know	which	taint	labels	are	flowing	through	a	program	beforehand

• Static	Analyses	and	Language	techniques
• Implicit	Flows [2],	IPCs,	Asynchronous	code	(which	is	common	in	IoT apps	i.e.,	Trigger-Action
programming	is	ubiquitous [3])	can	cause	under-tainting

• Developers	must	use	specialized languages	restricting	flexibility

• Reliance	on	particular	language	or	OS	structure	for	security
• IoT exhibits	OS	and	language	diversity

29

[1]	Paupore	et	al.,	HotOS’15
[2]	Sarwar et	al.,	SECRYPT’13
[3]	Ur	et	al.,	CHI’14,	CHI’16


