
Applying the Opacified Computation Model
to Enforce Information Flow Policies

in IoT Applications
Amir Rahmati, Earlence Fernandes, Atul Prakash

University of Michigan
{rahmati,earlence,aprakash}@umich.edu

Abstract—Enforcing flow-control is an important, albeit dif-
ficult to achieve security goal in practical applications. In this
paper, we consider the problem of flow-control in IoT applications
and present an approach to enforce information flow policies on
them. We describe a model called Opacified Computation and its
implementation, FlowFence, and show how to port an existing
IoT application (without flow policy enforcement) to one that uses
FlowFence to guarantee protection against data leakage. Finally,
we report on performance overhead and discuss directions for
future work.

I. INTRODUCTION

Smart phones and IoT devices (e.g., wearables, smart home
devices) have unprecedented access to our personal informa-
tion such as location, contacts, medical records, movement
patterns, and video and audio feeds. Apps written for these
platforms promise great benefits in functionality, energy ef-
ficiency, and health monitoring, but also pose security and
privacy risks [1]. Although many of these apps have legitimate
reasons to compute on sensitive data produced by cyber-
physical platforms, compromised or maliciously designed apps
can use their access to steal user information. Traditionally,
such platforms have used permissions to regulate apps’ access
to data and devices [2]. However, permission systems only
control what resources an app accesses, but cannot control
how apps use that data. This fundamental discord leads to
misbehaving apps (e.g., in smartphones [3], and more recently,
in smart homes [4]).

A system that controls how an app uses data needs to know
three things: (1) sources of data, (2) sinks of data, and (3)
how data flows between sources and sinks. Prior work has
suggested two strategies to achieve such flow control:
• Taint-tracking. Such systems use static or dynamic anal-

yses to mark variables with “taints” as they get exposed
to sensitive data, then track those taints based on the data
flows in the program [5], [6], and finally provide a policy
enforcement point when the program attempts to exfiltrate
tainted data. Although such approaches might catch some
data stealing apps, reasoning about program logic in gen-
eral can be arbitrarily difficult. Therefore, these systems
frequently suffer from incompleteness [7] (missing certain
flows), or high overhead [8] (making them unsuitable for
constrained platforms). Furthermore, These approaches are
language specific and limit developer’s choice [9], [10].

Static analysis tools also do not bode well in asynchronous
environments such as IoT platforms, where trigger-action
programming and device delays are prevalent.

• Label Based Flow Control. Such systems define labels
for different data sources, and then confine an app’s access
to sinks based on source-defined declassification policies.
An example of this would be a password quality checker
that accesses third-party resources for downloading patterns
but can only access user passwords when it gains the
“password” label which cuts off its outside communication
capability [11]. Although such approaches do not face
performance overheads that plague taint-tracking systems,
they are limited to producer (source) defined policies (e.g.,
password 6→ internet). While this would not be a short-
coming in platforms such as JavaScript [11] and web [12],
it makes these systems less flexible and unsuitable for IoT
domain, where diversity of scenarios and requirements arises
the need for user-specified discretionary policies such as
location → lightSwitchA.

In this work, we discuss FlowFence [13], and its use in
development of IoT apps for which flow policies are enforced.
FlowFence draws inspiration from prior systems such as
Cowl [11], Hails [12], and Darkly [14], but also extends the
concepts so that flow policies can be applied to practical IoT
apps.

The key idea behind FlowFence is the notion of Opacified
Computation in which the system provides sandboxes where
an app can access sensitive data. Developers wishing to
use sensitive data must split their apps into modules, called
Quarantined Modules (QMs), that operate on sensitive data
within the sandbox. Under this model, taint tracking occurs at
the QM level. As a QM accesses sensitive data, its sandbox
accumulates taints from data sources. Results returned from
QMs take the form of opaque handles that carry the taint
of the sandbox at the point of return. Outside the sandbox,
an opaque handle provides no information about the return
results—it cannot be dereferenced or mapped to the sandboxed
data. An opaque handle can get dereferenced in two ways: (1)
it gets passed into another Quarantined Module or (2) it gets
sunk through a trusted API. Sensitive data written to a sink
must satisfy flow policies of the form <source taint, sink>.
Flow policies are defined in an app’s manifest and must be
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approved by the app’s user.
In the rest of this paper, we first discuss the two previous

approaches to flow-control in more detail (§II). We then
examine the architecture of an Opacified Computation system
(§III). Next, we walk through an example of how a typical
program can be implemented in this model (§IV). Finally, we
discuss future work and the associated challenges (§V).

II. RELATED WORK

Taint-Tracking: The most well known technique for monitor-
ing data flows through programs is taint-tracking [15]. Taint-
tracking systems typically use two approaches: (1) Dynamic
techniques (e.g., TaintDroid [5]) that associate a taint label
with variables in applications and instrument the system to
propagate taints; and (2) Static taint-tracking techniques (e.g.,
FlowDroid [6]) in which statically label inputs and analyze
data/control flows to determine potential taints at exit points
from the program. Dynamic techniques suffer from noticeable
run-time overhead (e.g., 14% for TaintDroid [5]), while static
techniques depend on access to source code and on language(s)
used. Both classes of techniques often suffer from over-tainting
or under-tainting [7] and also fall short in handling implicit
flows and concurrency. Languages such as JFlow [9] also exist
which are designed from ground up to support taint-tracking.
However, these require developers to learn a new security-
typed language and then can only build their apps in that
language.
Label Based Flow Control: In label based systems, infor-
mation flow control is enforced through a predefined labeling
scheme that defines policies regarding accessing and publish-
ing sensitive data. COWL [11], Hails [12], and Flume [16]
are examples of these systems which provide flow control
for webapps, Javascript and OS processes respectively. The
main shortcoming of these systems is their reliance on pro-
ducer (source) defined labels and policies. This limits their
applicability to dynamic environments like the IoT where
multiple devices and platforms may interact with each other in
unpredictable patterns. An example of this would be a camera
which could be used to provide a web feed, or perform face
recognition to open a door, or any other number of functions
depending on its deployment.

III. OPACIFIED COMPUTATION MODEL

The Opacified Computation model, first introduced in our
recent work [13], requires each app to consist of: (1) Sensitive
sources and sinks that are only accessible inside sandboxes;
(2) a set of Quarantined Modules (see Introduction) that
implement functions to process sensitive data and that execute
in sandboxes, and (3) an unguarded non-QM code that orches-
trates execution of the program. A trusted system tracks taints
for QMs as they execute, treating the function as a blackbox,
and not at the instruction level. This allows for both efficient
taint-tracking as well as use of any language inside a QM
function. Programmer chooses the decomposition into QMs
to control over-tainting.
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Fig. 1. Data flow in and out of a sandbox. Opaque handles (OHt(d)) are
transparently dereferenced and their taints (t) are added to sandbox taint set
(T ). Any attempt to use sinks (F (d) → Sink) has to go through trusted
API which is subject to <source,sink> flow policies. Non-QM code cannot
dereference an opaque handle (OHT (g(d))) to access its data.
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Fig. 2. Architecture of FlowFence [13], an Opacified Computation system for
IoT frameworks. Developers split apps into Quarantined Modules, that run in
sandbox processes. Data leaving a sandbox is converted to an opaque handle
tainted with the sandbox taint set.

As discussed, results returned by a sandbox are converted
to opaque handles. Opaque handles are hidden references
to sensitive data. Each opaque handle is associated with a
set of taints that represent the type of sensitive value they
represent. An opaque handle can only be dereferenced inside
a sandbox when passed to another QM. Figure 1 shows how
such a transaction would work. When program passes an
opaque handle to the QM, the Trusted Service transparently
dereferences it and passes the data to the QM. Trusted Service
also adds the taint associated with the handle to the taint set
associated with QM’s sandbox. When a QM returns data, the
Trusted Service again creates an opaque handle of the data,
tainted with the sandbox taint set. To write data to a sink, a QM
must use a FlowFence-provided trusted API, which verifies
whether the flow from QM’s taint set to the sink is allowed.
If a violation is detected, an exception occurs inside the QM
which is not exposed to non-QM code. FlowFence has two
main mechanisms for data sharing: Key-value store, and event
channels. Each QM has a key-value store which is read-only
for other QMs and contains <key,sensitive value,taint label>
entries. This allows publishers and consumers in a device-
agnostic manner. Each producer can also have multiple event
channels which allow data consumers to register for callback
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from data publisher. We direct readers to the FlowFence [13]
paper for in-depth discussion on architecture and other details.

Figure 2 presents an overview of FlowFence [13] architec-
ture, a system implementing the Opacified Computation model
for IoT frameworks. FlowFence does not suffer from under-
tainting, but could incur over-tainting if an app is not correctly
modulated into QMs. However, over-tainting is detectable
when comparing requested flows with authorized flow policies.
In the next section, we will discuss the steps for developing
an app in FlowFence platform.

IV. DEVELOPING APPS UNDER OC MODEL

To illustrate the model’s applicability, we will go through
the steps for porting an existing SmartThings app to a
FlowFence-based application. The app accesses the user’s
location and automatically turns on (and off) a light if the
user is within (or outside) a predefined geo-fenced area.1 The
app can provide a guarantee to the user, via its manifest, that
location data is not transferred to Internet and only used to
control a light switch.

In its manifest (Listing 1), application requests location →
switch data flow. This flow is either previously approved by
data producer (i.e., location service) or must be approved by
user at install time. FlowFence ensures that no other flow of
location data will occur, say to the Internet, even if application
attempted it or was exploited to attempt it.

Figure 3.a provides an overview of the main functions of
the original (permission-based) SmartThings app. A presence
detector function (Listing 3) monitors user’s location. Upon
detecting a change, it activates the toggleSwitch function
(Listing 6) which turns the light on or off. In the original
app, the user has no flow guarantees without inspecting and
analyzing code in depth – location can potentially be leaked
to the Internet.

Figure 3.b presents how the SmartLight application has to be
modified to use FlowFence. Two main changes must be made:
(1) The location service developer needs to define a QM for
presence detector (Listing 5) that monitors location (sensitive
source and tainted with locationTaint), updates a Key-
Value store to record presence status, and fires channel event
when detecting a change; and (2) SmartLight developer needs
to define a QM for light switch (Listing 7) to subscribe to
the channel, read presence status via events (thus also getting
tainted with locationTaint, and configures the switch, a
sink, to which flow is permitted by policy. Event channels are
declared in the publisher’s manifest (see Listing 2) and allow
both intra-app and app-to-app communication of tainted data
between QMs. A QM is structurally similar to a typical Java
class, but needs to use FlowFence primitives to access and
share sensitive data. This familiarity makes it easy for devel-
opers to adopt their programs to function within FlowFence
framework. In our evaluation, it took a programmer unfamiliar
with framework’s API 2 days to port SmartLight application.

1Note that we simplify the code and focus on relevant parts of it because
of space constraints.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FlowFenceManifest ...>
3 <policy>
4 <allow flowfence:src="locationTaint"

flowfence:sink="SmartThings.SmartSwitch" />↪→

5 </policy>
6 </flowfenceManifest>

Listing 1: SmartLight FlowFence policy. location → switch
data flow is requested by the application. To establish, this
flow either has to be pre-approved by data producer (location
service) in producer’s manifest (Listing 2) or by the user
during install time.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FlowFenceManifest ...>
3 <event-channel flowfence:name =

"presenceUpdateChannel" flowfence:exported =
"both" />

↪→

↪→

4 </flowfenceManifest>

Listing 2: Location service FlowFence policy. location →
switch flow has not been pre-approved, thus SmartLight will
need to get user’s approval to establish it. Location service
however has defined an event channel which can be used by
SmartLight to subscribe for updates.
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Fig. 3. Normal structure of the SmartLight app compared to the FlowFence
model.

Listing 5 presents the definition of presence QM. The
QM writes presence value to the KV store. It also sends an
update to the channel if there is change in presence value so
subscribing QMs can get notified.

Notice that the presence change detector function is moved
into the QM and modified (Listing 4) to store presence in
KV store, so that it can be accessible by other QMs. Toggle
switch function is also moved inside a QM. (Listing 7). This
QM reads the presence status from KV store and adjust the
switch value accordingly. Neither QM can leak location data to
the Internet, since access to Internet in a QM is only available
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1 firebaseRef.child(LOC_KEY).addValueEventListener
(new ValueEventListener()) {↪→

2 public void onDataChange (DataSnapshot
dataSnapshot) {↪→

3 String presence = (String)
dataSnapshot.getValue();↪→

4 toggleSwitch(presence);
5 }
6 ...
7 }

Listing 3: The original (permission-based) presence function.
It calls toggleSwitch when detecting a presence change.

1 QM.S1<String, Void> presenceKV =
oconn.resolveStatic(void.class,
PresenceQM.class, "putLoc", String.class);

↪→

↪→

2 ...
3 firebaseRef.child(LOC_KEY).addValueEventListener

(new ValueEventListener()) {↪→

4 public void onDataChange(DataSnapshot
dataSnapshot) {↪→

5 String presence = (String)
dataSnapshot.getValue();↪→

6 putLoc.arg(presence).call();
7 } ...
8 }

Listing 4: FlowFence presence function. Function updates a
KV store value when detecting a presence change.

1 public class PresenceQM implements Parcelable
2 {
3 public static void putLoc(String presenceVal)
4 {
5 //Write presence value to KV store
6 SharedPreferences myprefs =

FlowFenceContext.
7 getInstance().getSharedPreferences
8 ("presenceKVS", Context.MODE_WORLD_READABLE);
9 SharedPreferences.Editor edit =

10 myprefs.edit();
11 edit.putString("location", presenceVal);
12 ...
13 //fire an event to any listening QM
14 IEventChannelAPI eventApi = (IEventChannelAPI
15 )FlowFenceContext.getInstance().getTrustedAPI
16 ("event");
17 eventApi.fireEvent(builtTS, ComponentName.
18 unflattenFromString("presenceChannel"));
19 Log.i("PresenceQM", "updated KV with value: "

+ presenceVal + ", and fired channel
event");

↪→

↪→

20 }
21 ...
22 }

Listing 5: presenceQM. The QM defines a KV store to record
presence state and fires an event to subscribed QMs whenever
a change in key value occurs.

via a Trusted API that enforces flow policies.
Performance: Using the modified SmartLight application
caused modest latency increase in app response time. In our
setup, we used an LG Nexus 4 running a modified version
of Android 5.0 augmented with FlowFence as our IoT hub.
In our experiments, the time it took for the switch to turn on
after user entered the geo-fenced area increased by 90ms. We
considered this extra latency to be acceptable for this class of

1 private void toggleSwitch(String presence){
2 if(!history.equals(presence)) {
3 if (presence.equals("home")) {
4 Log.i(TAG, "let there be light!");
5 List<SmartSwitch> switches =

SmartThingsService.getInstance(). c
getSwitches();

↪→

↪→

6 if(switches != null) {
7 for (SmartSwitch ssw : switches) {
8 SmartThingsService.getInstance(). c

switchOnOff("on",
ssw.getSwitchId());

↪→

↪→

9 }
10 }
11 } else if (presence.equals("away")) {
12 Log.i(TAG, "lights off!");
13 List<SmartSwitch> switches =

SmartThingsService.getInstance(). c
getSwitches();

↪→

↪→

14 if(switches != null) {
15 for (SmartSwitch ssw : switches) {
16 SmartThingsService.getInstance(). c

switchOnOff("off",
ssw.getSwitchId());

↪→

↪→

17 }
18 }
19 }
20 history = presence;
21 }
22 }

Listing 6: The original (permission-based) toggle switch func-
tion. Program sends a command to turn lights on/off depending
on the presence value.

IoT applications given the higher assurance user is provided
about the confidentiality of their private data.

V. FUTURE RESEARCH DIRECTIONS

• Information flow tracking across multiple environments:
One major shortcoming shared across all approaches dis-
cussed in this paper is their limitation to one environment
(e.g., a single home). The growth of IoT systems and cloud
computing however, creates the need for information flow
control across multiple environments and platforms [17].
In an IoT ecosystem, multiple environments with different
communication channels, computational capabilities, sen-
sors and actuators need to interact with each other and the
surrounding environment (e.g., a smart city consisting of
smart buildings and roads). Future flow control systems need
to propagate information flow across these different plat-
forms to provide comprehensive control. Hardware security
extensions such as Intel SGX [18] or ARM TrustZone [19]
can provide the required integrity to create a trusted com-
puting base in such scenarios.

• Mitigating side-channels: At their best, information flow
control systems can control the course of data from sources
to sinks but they are still susceptible to side-channel attacks
that leak data about system events. These side-channels can
be intentional in form of covert channels (e.g., using switch
toggles in SmartLight app to transmit data) or unintentional
(e.g., power variations caused by different computational
loads, program control flow, timing). Limiting such attacks
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1 public class ResponderQM implements Parcelable
2 {
3 public static void pollPresenceAndCompute()
4 {
5 // Read updated presence value from KV store
6 SharedPreferences presencePrefs =

FlowFenceContext.getInstance(). c
createPackageContext("presenceQM",
0).getSharedPreferences("PresenceKVS",
Context.MODE_WORLD_READABLE);

↪→

↪→

↪→

↪→

7 String presence =
presencePrefs.getString("location", "null");↪→

8

9 // Read previous presence value from KV store
10 SharedPreferences myprefs =

FlowFenceContext.getInstance(). c
getSharedPreferences("hist_store",
Context.MODE_WORLD_READABLE);

↪→

↪→

↪→

11 String history = myprefs.getString("history",
"");↪→

12

13 // Toggle switch function
14 if(!history.equals(presence)) {
15 String op = null;
16 if (presence.equals("home")) {
17 Log.i(TAG, "let there be light!");
18 op = "on";
19 } else if (presence.equals("away")) {
20 Log.i(TAG, "lights off!");
21 op = "off";
22 }
23

24 if (op != null) {
25 ISmartSwitchAPI switchAPI =

(ISmartSwitchAPI) FlowFenceContext. c
getInstance().getTrustedAPI("smartswitch");

↪→

↪→

26 List<SmartDevice> switches =
switchAPI.getSwitches();↪→

27

28 if(switches != null) {
29 for (SmartDevice ssw : switches) {
30 switchAPI.switchOp(op, ssw.getId());
31 }
32 }
33 }
34

35 history = presence;
36 // Store new presence value in KV store
37 SharedPreferences.Editor edit =

myprefs.edit();↪→

38 edit.putString("history",
hist);↪→

39 edit.commit();
40 }
41 }
42 }

Listing 7: Responder QM reads an updated presence value in
KV store, and toggle switches based on it.

fall outside the scope of access-control systems but remain
a major concern for these systems and remains an active
research area [20]. FlowFence does not eliminate these
side-channels, but mitigates them by coaxing developers
toward a more structured use of privacy sensitive resources
through usage of QMs and preventing unnecessary access of
program functions to these resources by taint-tracking flow
of data between sources and sinks.

• Policy Management: While there has been major progress

in enforcing flow-control across systems, meaningful rep-
resentation of these decisions to both admins and users
still remains a challenge. Managing, comprehending, and
delegating policies in a multi-stakeholder environment (e.g.,
smart city) creates new challenges that lie outside of tradi-
tional flow control systems. In addition, meaningful visual-
ization of these policies remain a major interface challenge,
especially given existing problems in this space [2], [21].

VI. CONCLUSION

Current access control system suffer from well-known but
difficult-to-solve problems. In this work, we discussed the
Opacified Computation model as an approach to achieve fine-
grained access control—we showed how it draws inspiration
from previous systems and we highlighted its principles that
improve upon the current state of the art in flow control. We
walked through an example of how developers could modify
their applications to fit this model while highlighting some of
its shortcomings and discussing future research directions.
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