
Research Directions:
Cyber-Physical Systems

www.cambridge.org/cbp

Results

Cite this article: Krish V, Mata A, Bak S,
Hobbs K, and Rahmati A (2024). Provable
observation noise robustness for neural
network control systems. Research Directions:
Cyber-Physical Systems. 2, e1, 1–12. https://
doi.org/10.1017/cbp.2023.5

Received: 30 June 2023
Revised: 3 November 2023
Accepted: 29 November 2023

Keywords:
neural network robustness; safety-critical
control systems

Corresponding author:
Veena Krish; Email: kveena@cs.stonybrook.edu

© The Author(s), 2024. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://creativeco
mmons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

Provable observation noise robustness for
neural network control systems

Veena Krish1 , Andrew Mata1, Stanley Bak1, Kerianne Hobbs2 and Amir Rahmati1

1Stony Brook University, Stony Brook NY, USA and 2Air Force Research Lab, Wright-Patterson Air Force Base,
Ohio, USA

Abstract

Neural networks are vulnerable to adversarial perturbations: slight changes to inputs that can
result in unexpected outputs. In neural network control systems, these inputs are often noisy
sensor readings. In such settings, natural sensor noise – or an adversary who can manipulate
them –may cause the system to fail. In this paper, we introduce the first technique to provably
compute the minimum magnitude of sensor noise that can cause a neural network control
system to violate a safety property from a given initial state. Our algorithm constructs a tree of
possible successors with increasing noise until a specification is violated.We build on open-loop
neural network verification methods to determine the least amount of noise that could change
actions at each step of a closed-loop execution. We prove that this method identifies the unsafe
trajectory with the least noise that leads to a safety violation. We evaluate our method on four
systems: the Cart Pole and LunarLander environments from OpenAI gym, an aircraft collision
avoidance system based on a neural network compression of ACAS Xu, and the SafeRL Aircraft
Rejoin scenario. Our analysis produces unsafe trajectories where deviations under 1% of the
sensor noise range make the systems behave erroneously.

Introduction

Real-world systems are increasingly adopting machine learning (ML) methods to make control
decisions. Neural networks, considered universal function approximators, are now widely used
to represent control policies of autonomous systems (Miller, 1989; Morel et al., 2001; Palancar
et al., 1998; Shin and Kim, 2004). However, neural networks are known to be vulnerable to
adversarial examples: small perturbations of observations that can cause incorrect predictions.
These vulnerabilities were originally identified in perception systems (Goodfellow et al., 2014)
and later extended to other domains such as audio processing (Carlini and Wagner, 2018),
natural language processing (Cheng et al., 2020), and reinforcement learning (RL) systems (Lin
et al., 2017; Pinto et al., 2017). Given the rapid expansion of ML into real-world systems, the
potential lack of robustness to adversarial examples is concerning when such networks are to be
applied in safety-critical domains (Eykholt et al., 2018). Numerous methods have emerged to
efficiently identify these perturbations, which can be synthesized without knowing details about
the target system (Papernot et al., 2016), without the exact input example (Moosavi-Dezfooli
et al., 2017), and in real-time (Gong et al., 2019). In response, provable defensemechanisms have
been developed for perception systems based on open-loop neural network verification
(Albarghouthi, 2021; Bak et al., 2021; Liu et al., 2019; Xiang et al., 2018). Thesemethods examine
a single execution of a neural network and can prove, in certain cases, that no images within
some finite noise around a given input image are misclassified. However, for closed-loop
systems where a network controller interacts with an environment repeatedly, no such methods
exist to identify an unsafe trajectory with provably minimum noise.

In this work, we strive to find the minimum-noise sequence that can cause a closed-loop
neural network control system to violate a safety specification. Our technique guarantees that all
executions with observation noise below this threshold can never cause a safety violation.
An example of such a trajectory in the context of an air-to-air collision avoidance system we
analyze in our evaluation is shown in Figure 1. Due to erroneous position readings (shown in
gray) caused by injected observation noise, the aircraft under control (starting at the top left) is
maneuvered into a collision with an intruder aircraft at the bottom-right corner of the figure.
Our approach builds upon open-loop neural network verification methods to determine
guaranteed minimum-noise thresholds at each step, exploring and expanding a tree search of
possible system states until an unsafe trajectory is identified. This approach is adaptable as it
(1) supports any neural network verification tool that can return whether an output can be
reached within a given noise region around an input, and (2) supports any norm for defining the
least magnitude of noise, assuming that the underlying verification tool can support it as well.
We also prove this produces the minimum-noise adversarial trajectory from a given start state.
We demonstrate our approach on four systems of varying complexity and domains: (1) the Cart

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://www.cambridge.org/cbp
https://doi.org/10.1017/cbp.2023.5
https://doi.org/10.1017/cbp.2023.5
mailto:kveena@cs.stonybrook.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4151-5620
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/cbp.2023.5&domain=pdf
https://doi.org/10.1017/cbp.2023.5

Pole benchmark system used for reinforcement learning problems
(Brockman et al., 2016), (2) the Lunar Lander system (Brockman
et al., 2016), (3) an air-to-air collision avoidance system based on a
proposed neural network compression of the Airborne Collision
System X Unmanned (ACAS Xu) system (Owen et al., 2019), and
(4) the SafeRL aircraft formation rejoin task (Ravaioli et al., 2022).
Comparisons with existing work on best-effort adversarial attacks
for RL systems show that our method finds trajectories that require
less noise and fewer steps to succeed.

The main contributions of this paper are as follows:

• We introduce the first general-purpose approach to identify
the largest amount of sensor noise that can be tolerated by a
discrete action neural network controller before a safety
property is violated.

• Our approach returns the exact sequence of adversarial
perturbations that can guide the system from a given initial
state to a final unsafe state with the least amount of noise.

• We evaluate our approach on four systems and show
sequences of noisy sensed observations that can guide the
systems to unsafe states. These sequences were found with
sensor noise under 1% of the range of each variable across all
possible observations.We compare these findings with recent
methods for attacking reinforcement learning systems.

Background

Ourwork leverages advances in open-loopneural network verification,
neural network control systems, and Bayesian optimization.
Open-loop neural network verification. Given a neural network
fNN : Rn ! Rm, an input set X � Rn, and an unsafe set of outputs
U � Rm, the open-loop NN verification problem is to prove that for
all allowed inputs x 2 X, the network output is never in the unsafe
set, fNN xð Þ=2U .

A wide variety of algorithms (Albarghouthi, 2021; Liu et al.,
2019; Xiang et al., 2018) and tools (Bak et al., 2021) have been
recently developed to solve this problem. Our approach requires
that the tool produce concrete counterexamples if verification fails:
a specific x 2 X such that fNN xð Þ 2 U (most tools support this).
Recent Safe RL methods build on neural network verification to
estimate unreliable starting positions or forecast regions of the
state space where the network may act inconsistently. However,
open-loop neural network verification is insufficient to provide

provable safety for neural network control systems’ robustness to
noise – the focus of this work – as these systems repeatedly invoke
the neural network as they interact with an environment. We are
not solely interested in finding perturbations that produce unsafe
actions due to a single network invocation; rather, we are interested
in computing sequences of noise at each step that causes the system
to eventually violate its specification.
Neural network control system. We consider networks with
discrete action spaces so that the network output is mapped to
one of a finite set of actionsA, given by a function, gACT : Rm ! A.
A neural network control system (NNCS) interacts with an
environment, modeled with a function hENV : Rn � A! Rn. Given
a state of the system xi 2 Rn, the one-step semantics compute the
state after one discrete time step as xiþ1 ¼ hENV xi; gACT fNN xið Þð Þð Þ.
We also define noisy one-step semantics where, in addition to xi, we
are given a sensor noise vector δi 2 Rn and compute the next state as
xiþ1 ¼ hENV xi; gACT fNN xi þ δið Þð Þð Þ. A neural network control
system is also associated with either a specific initial state x0 or a
set of possible initial states I � Rn. Given an initial state x0 2 I , the
one-step semantics can be repeated to compute the system state up to
any number of steps, and specific systems include a stopping condition
such as a maximum number of time steps or when the state enters
some termination set.

In this work, we consider system trajectories subject to
sensor noise. A noisy trajectory, or simply trajectory T of an
NNCS is a finite sequence of states and noise vectors, written as

T ¼ x0!
δ0 x1!

δ1 . . . !δn�1 xn, such that x0 is an initial state, xn meets
the stopping condition, and each xi in the sequence is related to the
next state xiþ1 according to the noisy one-step semantics with noise
vector δi. When it is clear from context, we refer to just the
sequence of states as the trajectory.
Bayesian optimization. Bayesian optimization (Frazier, 2018) is a
well-studied global optimization algorithm for estimating the
extrema of a black-box function. Themost common approach uses
function samples to fit a Gaussian process to the data and then
performs a surrogate optimization by sampling over the Gaussian
process. This is often much faster than sampling the original
function. The original function is sampled at optimal points
identified in the Gaussian process. The Gaussian process is then
updated based on the new data (a posterior distribution is
computed based on the prior distribution conditioned on the new
information), and the optimization repeats.

A full review of Bayesian optimization is beyond the scope of
this work (Rasmussen and Williams, 2006), but the following
aspects motivated its use in our approach:

• Bayesian optimization is typically used when sampling the
original function is expensive

• Each iteration requires inverting the covariance matrix in a
Gaussian process; it becomes impractically slow when the
number of function calls exceeds about a thousand

• Exploration and exploitation are controlled by defining an
acquisition function that optimizes over a Gaussian process
based on the predicted mean and covariance (uncertainty) at
each point in the state space.

Finding minimum-noise adversarial trajectories

In this section, we define more formally the problem we are solving
and describe our approach to computing minimum-noise adversa-
rial example trajectories for neural network control systems.

Figure 1. Example of a minimum-noise trajectory, starting within a safe region (far
away from an oncoming aircraft) and ending at a near mid-air collision state at the
bottom-right corner of the figure. States shown in gray correspond to the adversarial
values that caused an incorrect control output. The segments of the trajectory shown
in red also correspond to the timesteps that required observation noise to cause the
intended turn advisory. The largest magnitude of noise, represented by the large circle
around (−34K ft, 12K ft) is the least that is required to realize this particular collision.

2 Veena Krish et al.

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

Problem statement

For a given policy defined through gACT and environment defined
through gENV , our goal is to determine aminimum-noise trajectory
T that violates the specification. We focus on safety specifications
with respect to a given set of unsafe states U � Rn, although
extensions to finite-length temporal logic properties are straight-
forward. A trajectory T is considered safe if all states xi 2 T ,
xi =2 U . The noise bound D on trajectory T is computed as the
maximum-noise over all steps i, D ¼ maxi δij jj jð Þ. Since T with
noise D is the minimum-noise trajectory, any other trajectory T 0
with noise D0 <D must be safe.

In our evaluations, we represent the magnitude of sensor noise
at each state as the L1 norm of observed variables after scaling each
variable by the possible range of sensed values. However, this
technique can be used with any norm that the underlying open-
loop neural network verification tool supports. We consider two
problems:

In Problem 1, we are given a single initial state xinit 2 Rn. We
seek to find a minimal-noise trajectory with one terminus within a
set of safe states and another terminus within a set of unsafe states.
This problem can be considered either forward or backward in
time: xinit can refer to a state at either the start or the end of a
trajectory. If xinit represents the start of a trajectory within a safe
region, we explore states of the environment forward in time
(Mode 1) until the unsafe set is reached. Alternatively, we can seek
a trajectory that ends at a given unsafe state, where xinit represents
the end of a trajectory. Given a state transition model that can
simulate backward in time Mode 2, we search over possible
trajectories until we find one that would have started in a safe
region. In both these cases, we can produce the provable
minimum-noise trajectory, given a noise tolerance and maximum
trajectory length.

In Problem 2, we consider an outer optimization over these
found trajectories. We consider a set of initial states I � Rn, where
the initial state of each trajectory xinit 2 I . In this case, we use
Bayesian optimization to sample over I and compute the
minimum-noise trajectory as an instance of Problem 1, optimizing
to find the global minimum. Although Bayesian optimization is
sample-based (so we no longer have a guarantee the returned
trajectory is globally theminimum), finding the global minimum is
likely not possible without stronger assumptions on the
environment hENV . For example, if hENV is given as a white-box
symbolic model with differential equations, it may be possible to
extend our approach with reachability analysis methods (Althoff
et al., 2021) to find the global minimum. In this work, we assume
hENV is given as a black-box function.

This definition of minimum noise and adversarial attack is a
natural extension of the case of adversarial examples in perception
systems. It provides information on robustness due to both
naturally occurring sensor noise as well as against attackers that
can alter the environment observations (for example, through
bounded GPS spoofing (Nassi et al., 2021)).

Problem 1: Minimum noise from a given state
We first describe Problem 1 in depth for the forward mode, and we
follow with details specific to the backward mode.

Mode 1: From an initial state, forward in time
Algorithm 1 details the procedure for determining the minimum
observation noise bound and corresponding minimum-noise
trajectory that violates the specification.We characterize the search

by constructing a tree representing all possible trajectories that
begin at a given initial state. Each node in the tree represents a
possible state of the system at a given time, and the edges of the tree
correspond to discrete actions.

Algorithm 1 describes three functions: (i) the outer-loop
method that starts and terminates the search (MinErrSearch),
(ii) the computation of noisy states using an open-loop neural
network verification solver (ComputeMinNoiseSuccessor), and
(iii) a method for determining the next node to explore
(GetNextStateToExplore). We keep track of noisy states and
corresponding trajectories T by representing each tree node as an
object that stores both the original and noisy states. The initial state
(statestart) is the root of the tree. For simplicity of the presentation
of Algorithm 1, we omit the explicit storage and tracking of the
noisy states. Nodes are explored in order of the increasing
observation noise. The search concludes when a leaf node has been
found such that its trajectory (the path from the root) violates the
specification. In effect, we continue building out a trajectory until
the noise needed to expand it further exceeds that of any other
possible trajectory, and the search concludes when a path has been
found to violate a safety property. The computeMinNoiseSucces-
sors function computes the smallest deviation to a state that would
cause an incorrect target action to be predicted. This leverages
open-loop neural network verification methods, which return a
noisy state (the counterexample) for a fixed amount of noise. The
NN_VERIFY_SEARCH function computes the smallest noise

Algorithm 1. Exact Search Algorithm

1: successor_noise_map . map of (unexplored states, action)
to computed noise δ, global variable

2:
3: function MinErrSearch statestartð Þ
4: root statestart
5: exploring root
6: while not met stopping condition do
7: ComputeMinNoiseSuccessors(exploring)
8: exploring, δ GetNextStateToExplore()
9: end while
10:
11: . Return the trajectory from tree root to the last explored

node and corresponding δ
12: return δ, T : root ! exploring
13: end function
14:
15: function ComputeMinNoiseSuccessors stateð Þ
16: a gACT fNN stateð Þð Þ . no-noise action
17: successor_noise_map[state; a] 0
18: for ai 2 remaining actions do
19: . Get noise that would have predicted ai
20: δ = NN_VERIFY_SEARCH(state; gACT fNNð Þ; ai)
21: successor_noise_map[state; a] δ
22: end for
23: end function
24:
25: function GetNextStateToExplore()
26: (state next , a), δ arg minδ (successor_noise_map)
27: del successor_noise_map[state next ; a]
28: exploring.child edge¼a state next . expand tree
29: exploring exploring.child
30: exploring, δ
31: end function

Research Directions: Cyber-Physical Systems 3

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

threshold that would cause a change in action. This is done through
multiple calls to an open-loop neural network verification
algorithm (Brix et al., 2023), where the exact noise threshold
needed to cause a change in action is computed using a binary
search. The minimum trajectory noise therefore depends on the
tolerance of the binary search. Some nodes are reachable with no
noise (these represent the natural behavior of the system);
however, with no upper bound on added noise, all paths could
be made feasible.

Algorithm 1 is guaranteed to return the trajectory associated
with the least required noise, given a bound on the length of the
simulation. Additionally, terminating the search at any time will
yield a lower bound on the noise required to generate an unsafe
trajectory; this is a certification that the system is robust to
perturbations under this bound.

All the zero-noise paths are initially explored before we explore
any node that requires some non-zero noise.While simulating awell-
trained agent forward in time, the expansion of zero-noise paths will
not terminate unless provided a maximum simulation duration
(equivalently: maximum depth of the tree). Importantly, limiting the
tree depth guarantees that the searchwill conclude and that an unsafe
trajectory will be found, assuming one exists. Once all safe paths have
been exhausted, the search will consider higher magnitudes of noise;
given sufficient noise and a finite trajectory length, finding a path that
meets the unsafe specification will always be possible.

A simplified (two control actions) illustration of the tree-
building process for an aircraft collision avoidance problem is
presented in Figure 2. The search is performed forward in time.
The root of the tree represents a specific collision state, and the
node numbers correspond to the exploration order determined by
Algorithm 1. Initially, the zero-noise successors in nodes #1 and #2
are explored. As no other 0-noise successors exist, the global noise
threshold is raised, and ComputeMinNoiseSuccessors identifies

the smallest magnitude of sensor noise that would reveal each
potential child node. Next, node #3 is explored, since the 0:4%
noise needed to actualize it is the least among potential successors
revealed in the previous step. The process continues until a valid
start state is found, for which we used the condition that two clear-
of-conflict commands would be issued in a row. If we assume that
Node #5 is a safe state, then the trajectory of Nodes #5, #4, #1 and
the Collision State is the minimum-noise trajectory that would
terminate in the given collision. No trajectory without at least 0.4%
observation noise would begin in a safe state and terminate in that
collision.

Mode 2: From a final state, backward in time
The same search tree can be constructed from an initial state xinit
that represents a given last, unsafe, state in a trajectory. In this case,
we construct a tree of state predecessors backward in time, until
one is found that exists in a set of safe states. The structure of
Algorithm 1 remains the same; whereas we previously enumerated
potential state successors, we now enumerate potential state
predecessors. Lines 16 and 18 in the function ComputeMinNoi-
seSuccessors instead refer to the actions that would have caused the
agent to end in the given state. For both modes, we begin with xinit :
one state in a given set, and search for the other end of its trajectory
in the opposite set.

Theorem 1. Algorithm 1 finds the trajectory that reaches the given
collision state with the minimum sensor noise.

Proof. Let T be the unsafe trajectory returned by the search
algorithm, given an unsafe end state S. Let errT refer to the noise
associated with T , or the maximum observation noise across all
nodes in T , and let nT refer to the node at which errT is observed.
We proceed by contradiction. Assume the returned trajectory T is

Figure 2. Illustration of a tree generated by
Algorithm 1.

4 Veena Krish et al.

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

not the minimum-noise trajectory so that there exists another
trajectory T 2 that leads to S with noisy errT 2

, where errT 2
< errT .

Let errT 2
be associated with node nT 2

. Every node corresponding to
trajectory T 2 has an observation noise less than or equal to errT 2

.
Since errT 2

< errT , every node corresponding to T 2 has an
observation noise strictly less than errT . However, GetNextNode-
ToExplore returns the node with the least-noise child at every
iteration of the search so that all nodes in T 2 must have been
explored before node nT is explored. This then is a contradiction,
because if T 2 was an unsafe trajectory returned by GetNextNo-
deToExplore, then the algorithm would have terminated and
MinErrSearch would have returned T 2.

Problem 2: Minimum noise from an initial set
The MinErrSearch algorithm yields a trajectory that begins from a
given initial state x0. To determine the initial state associated with the
global minimum-noise trajectory, we wrap calls to the function in an
outer Bayesian optimization loop. The constructed Gaussian Process
returns minimum-noise predictions in the form of a univariate
normal distribution. We used the probability of expected improve-
ment as the acquisition function, the normal CDF of the z-score for
the minimum found value, with an added ε constant to add an

exploration factorF y0��k xð Þ�εÞ
σk xð Þ

� �
(Brochu et al., 2010). This function

favors more of an exploitation strategy if ε is 0; we set ε empirically.

Evaluation

Environments

We evaluate our approach on four systems presented in Figure 3:
two benchmarks from the Open AI reinforcement learning Gym
and two aerospace tasks.

These environments were chosen to demonstrate the flexibility of
the tool: evaluations include runs that were performed both forward
and backward on systems of varied complexity andwith varied input
and output dimensions. The Dubins Rejoin system was originally
designed for continuous output control: we trained a discretized
version for use with our tool. The ACAS Xu networks were not
trained via reinforcement learning; the networks were trained to
mimic a lookup table (Julian et al., 2016). The OpenAI benchmarks
were trainedwith the Stable Baselines framework (default parameters
from the Stable Baselines Zoo) (Raffin et al., 2021) and the Rejoin
networkwith the authors’ implementation.More details about the set
of starting states, STL safety violations, and other training
information are included in Table 1. For the aircraft collision and
Lunar Lander environments, we only explore noise in the position
measurements (x, y, and headings); velocities are fixed throughout all
simulations. The Dubins Rejoin state observations are represented in
relative terms among the lead, rejoin region, and wingman.

Neural network verification

We use the neural network verification tool nnenum to compute
the closest counterexample for a given observation and target
output command. The distance from the original observation and
the counterexample corresponds to the least amount of noise � that
would cause the system to behave erroneously.

The nnenum tool uses linear star sets (Duggirala and
Viswanathan, 2016) to compute possible outputs of a neural
network given constructed sets of inputs. As inputs are propagated
through a network, sets are split whenever multiple output
predictions (advisories) are possible. When verification is
impossible, the tool yields a counterexample (x where
x 2 X; fNNðxÞ ¼ y and y 2 U). Our approach relies on these
counterexamples to calculate unsafe trajectories.

(a)

(b) (c)
(d)

Figure 3. Environments. (a): ACAS Xu from Owen et al. (2019), (b): Dubins Rejoin from Ravaioli et al. (2022), (c): Cart Pole from Brockman et al. (2016), (d): Lunar Lander from
Brockman et al. (2016).

Table 1. Descriptions of environments used for evaluation

ACAS Xu Dubins Rejoin Cart Pole Lunar Lander

Description Guide ownship to avoid
collision with intruder

Flight formation: guide wingman
to radius around lead

Balance pole on cart by
controlling cart position

Land the craft within the landing
pad by controlling left and right
engines

Simulation
direction

Backward Forward Forward Forward

Actions (Num
commands)

Turn left or right (5) Control rudder and throttle
actuators (16)

Move left or right (2) Fire left, main, or right engines (or
no-op) (4)

Observations
and Ranges

� 2 0; 60760½ � � 2 ��; �½ �
 2 ��; �½ � vown ¼ 800
vint ¼ 5000

poslead�wing 2 0; 1000½ �
posrejoin�wing 2 0; 1000½ �
vwingman ¼ 300 vlead ¼ 300

xcart 2 �2:4; 2:4½ � vcart 2 �5; 5½ �
�pole 2 �0:419; 0:419½ �
!pole 2 �5; 5½ �

2 �1; 1½ �, y 2 �5; 5½ � vx 2 �5; 5½ �,
vy 2 �5; 5½ � �lander 2 ��; �½ �
!lander 2 �5; 5½ �

Safety
Violation

�< 500 j poslead�wing
�� ��j2 < 150 ð �pole

�� �� > 12�Þ_ ð xcartj j > 2:4Þ ð y ¼¼ 0ð Þ^ ð xj j > 0:5ÞÞ_ ð xj j > 1Þ

Research Directions: Cyber-Physical Systems 5

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

The tool takes in an observation, a target output command, and
a threshold for noise (box constraints) around the observation to
search within. Because the exact noise threshold for each case is
unknown to us in advance, we make multiple calls to nnenum
within a binary search to pinpoint the lowest noise threshold that
would yield a successful counterexample. This noise threshold
corresponds to the least amount of noise �, and the counterex-
ample corresponds to the adversarial observation of the noisy
trajectory.We used a binary search tolerance of 1e�4 (0.01%) of the
maximum range for all experiments.

In principle, any similar verification tool could be used for our
approach (Bak et al., 2021). Tools that do not return counter-
examples could still be used within our method to compute
minimum magnitudes of tolerated noise; however, counter-
examples are needed for returning the exact sequence of noisy
observations.

Simulation direction and trajectory length

Our algorithm for Problem 1 was introduced for both forward and
backward simulations in time. For efficiency, the direction chosen
should depend on the relative sizes of the safe and unsafe states. For
example, the set of possible initial states for the ACAS Xu system is
much larger than the set of collision states, so we choose to perform
Bayesian optimization over the unsafe collision states and explore
trajectories backward in time. One advantage of conducting the
search beginning with terminal unsafe states, is that a maximum
simulation length is not required. With sufficient noise, the search
is guaranteed to reach a safe state, yielding a trajectory that begins
safely yet terminates in the supplied unsafe state. In contrast, if
simulating forward from a safe state using a well-trained network,
the system might never reach an unsafe state when following
a 0-noise path along the tree. For this reason, we acknowledge
limitations around scalability and, in practice, limit the length of
the trajectories explored. This constraint guarantees that we will
explore unsafe trajectories within a reasonable time, similar to
limiting the length of the simulation while training the agent.

The Cart Pole and Lunar Lander evaluations were performed
forward in time, and the trajectory lengths were capped at 15
timesteps. While the noise threshold returned by our approach for
these systems serves as an upper bound on the true minimum, it
still offers certainty that the system is provably safe within a given
time horizon. Moreover, existing techniques for identifying
stealthy adversarial perturbations similarly focus on a specific,
vulnerable time horizon. Comparisons with these state-of-art
techniques are included in the Evaluation section.

Results

Table 2 presents the least-noisy trajectory observed from uniform
samples of initial states. Results are filtered to include only initial

states that would have been safe without interference. Multiple
minimal-noise trajectories were generated from an independent
MinErrSearch (Problem 1). Each row describes the unsafe
trajectory associated with the least magnitude of noise across all
trials. The last two columns contextualize this noise in terms of the
initial state and maximum deviation in real units.

ACAS Xu

Figure 4 presents unsafe trajectories found by our approach on the
ACAS Xu system. Steps along each trajectory that could only be
realized with sensor noise are shown in red, whereas steps without
noise are shown in black. Gaps in this figure indicate regions of
starting states that are safe from future collision with under 1%
noise. For instance, no trajectory that terminates in a collision that
we sampled begins in a tail-chasing scenario (region at the bottom
half of the plot).

Interestingly, these trajectories are not symmetric around the
intruder: this is consistent with observations that the response
of the aircraft at single time steps is not entirely symmetric
(Katz et al., 2017a).

The noise associated with each trajectory is displayed in
Figure 5 along with its ending position and heading at collision.
Darker cells in the heatmap correspond to smaller minimum-noise
trajectories and represent more vulnerable portions of the collision

Table 2. Global minimum-noise trajectories from random and uniform samples

Environment Min Err Initial state Uncertainty in units (‘-’ if variable fixed)

ACAS-XU 0.6% [500, 5�6 ,
2�
8] [384.97 ft, 0:0398�, 0:0397�]

Dubins Rejoin 7.2 % [500.00 ft, 0.00 ft, 26.53 ft, 160.72 ft, : : :
300.00 ft/s, 0.00 ft/s, 58.53 ft/s, −294.24 ft/s]

[58.85 ft, 71.55 ft, 71.55 ft, 71.55 ft, -, -, -, -]

CartPole 1.6% [−0.0137, 0.026, −0.0474, −0.005] [0.16 units, 0.0896 units/s, 0.1338 rad, 0.16 rad/s]

LunarLander 0.1% [0.45, 0.5, 0, 0, 0, 0, 0, 0] [0.01, 0.01, -, -, 0.01, -, -, -]

Figure 4. Minimum-noise trajectories leading up to each collision point around the
intruder aircraft (minimum for each position across all headings).

6 Veena Krish et al.

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

surface. Cells with a white border emphasize the least-noise
heading per row. The green cell indicates the smallest magnitude of
noise, which quantifies the system’s robustness: no smaller amount
of noise will lead the aircraft into collision.

Dubins Rejoin

Results from 16 runs of the Dubins Rejoin environment are
presented in Figure 6. We sampled safe starting points along the

bottom half of a lead radius of 500 ft (� to 2� rad): properly trained
rejoin networks should control the wingman to stay within the
rejoin region and avoid flying closer to the lead. The inner circle in
Figure 6 represents the collision radius of 150 ft. The color of each
point represents the least amount of noise required to force the lead
to cross the collision radius. The least noise observed across the
start space was 7.1% of the input ranges, which translates to under
100 ft of uncertainty in the sensed positions (smaller than the
length of the aircraft). The trajectories on either side of 3�

2 rad are

Figure 5. Noise required to end in collisions specified by
position and heading. Each cell represents the least
magnitude of noise required to form a trajectory that ends
at the corresponding collision position/heading. The least
value per row is highlighted in white; the least noise overall is
in green.

Figure 6. Least noise required to end in a
collision starting from uniform initial states
around the lead. The least across all runs is
indicated by the arrow. The initial states plotted
are within the rejoin region; the collision radius is
shown by the inner circle.

Research Directions: Cyber-Physical Systems 7

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

not completely symmetrical, similar to those from the ACAS Xu
results. Again, similarly, the states closer to a tail-chasing collision are
themost robust. This is likely because these states represent situations
where the wingman can avoid collision without turning sharply.

Relevance to continuous-control systems: The Dubins Rejoin
system can be implemented for both continuous or discrete action
spaces. We investigated the extent to which findings from our
approach can generalize from the discretized version to the original
continuous-control version by applying the perturbed set of
noisy observations to the original system. While we observed that
the minimum separation distance between the two aircraft did
approach the collision radius, none of the trials ended in collision.
This is likely due to the size of the bins and the resulting difference
in network controllers: we discretized the action space into 4 points
for both the rudder and throttle actuators so that each node in the
search tree had a maximum of 16 children. Smaller bins would
likely result in similar controllers but with runtime tradeoffs.

Cart Pole

We evaluate on the benchmark Cart Pole problem to illustrate yet
another use of our approach: understanding how clean and
adversarial trajectories tend to differ. Figure 7 shows differences
between clean and adversarial trajectories originating from each
initial safe state; trajectories in red are those that would lead to a
crash from the initial point with the least amount of sensor
noise. The least-noise trajectories tended to push the cart right
(higher position values in the “Cart position” subplot), causing the
pole to tip counter-clockwise (lower angle values in the “Pole Angle”
subplot). This illustrates a bias in the trained control network:
components involved in controlling the cart right are more
vulnerable to small amounts of noise than components involved
in the left control.Moreover, we see that adversarial trajectories tend
to have higher linear and angle velocities across all steps.

Lunar Lander

The Lunar Lander experiments were initialized from two separate
regions near each landing pad pole, and trajectories were capped at

a maximum depth of 30 steps from the start. Our method revealed
many starting states that ended in a crash naturally; this approach
provides a quantifiable metric for assessing the quality of a
network. However, our approach also revealed the existence of
trajectories that would have been safe without noise. These
trajectories reveal vulnerabilities in a network that would have
otherwise handled the case appropriately. Similar to the cartpole
setting, some adversarial trajectories were also associated with
higher linear and angular velocities: the landers make contact with
the moon faster than in the clean settings. We reserve plots similar
to Figures 5 and 7 for the appendix.

Properties of unsafe trajectories

Positions and frequency of required noisy readings
Intuitively, as an agent approaches an unsafe state, the control
network should be more robust to sensor noise than it might have
been farther away. However, we observed that the simulation step
associated withmaximum sensor noise over unsafe trajectories was
not always close to the near-collision state. The ACAS Xu and Cart
Pole systems did satisfy expectations: the largest noise along a
trajectory tended to be closer to the collision.

However, the Dubins Rejoin and Lunar Lander distributions
are less intuitive: the most critical points for noise injection were
often at the start of a trajectory.

We can further analyze whether noisy observations were
required across most trajectory steps or if the safety violation
resulted from just a few noisy readings. While the unsafe
trajectories generally require small amounts of noise (< 1% of
the range of each input), a large proportion of steps in each
trajectory required some noise to keep the agents along an unsafe
path. For ACAS Xu and Dubins Rejoin, most trajectories needed
over 75% of steps to have noise for the system to reach an unsafe
state. On the other hand, most trajectories from the Cart Pole and
Lunar Lander environments only required noise under half the
time. Nevertheless, no unsafe trajectories were realized across all
experiments and environments with noise at just 1 timestep.

Overall, we find that minimum-noise unsafe trajectories are
generally the result of consistent noisy readings, mostly during
simulation steps closer to an unsafe state. Additional plots to
support these claims are included in the appendix.

Ablation experiments: Per-variable noise
We can use our method to further investigate how the control
networks are vulnerable to noise along specific input dimensions.
We performed ablation experiments with the ACAS Xu system as a
case study on the three inputs: �; �;c; full details are included in
Table 3.

We observe that variable � is most sensitive – an unsafe
trajectory was found with just 4:96 of noise in � (1:3785% of its
range). Fixing � yields unsafe trajectories with much higher noise.
A similar analysis could be performed on other systems to reveal
vulnerabilities in certain input dimensions. These results could
help prioritize how to safeguard against sensor spoofing attacks.

Effectiveness of Bayesian optimization

For environments whose initial safe states span a large range, we
show that the Bayesian optimization proposed in Problem 2
adequately estimates themost vulnerable starting state.We present
a case study of this optimization for the ACAS Xu system due to its
large initial state space (all points on a circle at 500 ft around the
intruder aircraft). Random or uniform sampling for Cart Pole and

Figure 7. Cart Pole clean and adversarial states over min-noise trajectories. Blue
lines represent the original (no-noise) trajectories from each initial state, and red lines
represent the corresponding adversarial trajectories (The X-axis is time). The unsafe
paths tend to force the cart right and pole counter-clockwise, which suggests uneven
vulnerabilities in the control network. The unsafe paths additionally resulted in higher
magnitude cart and pole velocities.

8 Veena Krish et al.

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

Lunar Lander is sufficient as their initial starting regions are small.
The ACAS Xu system is similar to Dubins Rejoin; we focus this
work on just the former to illustrate its use and avoid redundancy.

We compared the least noise found via random sampling with
that found via Bayesian Optimization over the start-space domain
for the same number of calls to MinErrSearch. Figure 8 shows how
the number of calls needed scales when approaching the global
minimum of 0:63%. Random sampling needs an average of more
than 200 iterations, while Bayesian Optimization only needs�110
to approach the global minimum.

The exact global minimum was not found consistently with
Bayesian Optimization because of the location of its corresponding
state: the Matern kernel function makes assumptions of smooth-
ness for the objective function it mimics. We confirmed that the
location of the exact global minimum is located in a region with
discontinuous values, making exploitation later in the search
ineffective as the valley is overlooked. Instead, Bayesian opti-
mization identified the state with the second smallest uniformly-
sampled point (0:65%), which is a useful upper bound on the
robustness of the system. While we demonstrated this outer-loop

technique on just the ACAS Xu system, we expect similar results
for other systems.

Comparisons with reinforcement learning adversarial
attack methods

While our approach is the first to guarantee the smallest magnitude
of noise that can cause a system to fail, we note that a parallel body
of work addresses adversarial testing of agents trained via
Reinforcement Learning. These works tend to focus on developing
attack strategies that empirically cause the system to fail, given
various limitations, by relying on trainingmodels to forecast future
states and leverage probabilistic machine learning approaches that
generate counterexamples at each time step.

Early works by Lin et al. (2017) and Sun et al. (2020) focused on
developing attack strategies that minimize the number of
perturbed time steps throughout a trajectory. Lin et al.’s
“Strategic Attack” proposes using a heuristic to inform when to
attack. Their timing heuristic is based on the preference of an agent
taking one action over another, and the attack uses a Projected
Gradient Descent method (Madry et al., 2017) to perturb the
observations when the metric exceeds a tuned hyperparameter.
Sun et al.’s “Critical Point Attack” (2020) expands on this by using
a planning model to seek the most critical set of consecutive
timesteps to attack. More recently, Zhang et al. (2021) developed
an attack method that learns an adversarial agent that perturbs
state observations tominimize the reward of its environment. They
frame the adversarial agent as a Markov Decision Process (MDP)
that uses the negative of the reward defined by the nominal training
process to train a new neural network that approximates this
adversary. The new network generates the sequence of adversarial
perturbations for a supplied trajectory length and noise cap; we
refer to this strategy as the “MDP Attack.”

Although the intended uses of our approach and the mentioned
attack strategies differ, we present these comparisons to highlight
how our certified approach can not only identify more optimal
attacks but also serve as a baseline for evaluating the optimality of
such attack strategies. We focus on the three aforementioned
strategies because they have publicly released their code and cover
common strategies (thresholded heuristic, planning method, and
training an adversarial agent). We used public-source implemen-
tations of Strategic Attack, Critical Point Attack, MDP Attack on
GitHub.1,2 Figures 9 and 10 present our results on the CartPole
system.

First, we compare our approach against these recent methods to
examine whether other methods identify the certified, smallest
amount of noise found by our approach to cause a system failure.
Empirical methods are not guaranteed to succeed; therefore, we
report the attack success as a rate over 50 trials for which we
previously found a minimal-error trajectory of 1.6%. Figure 9
presents these results for the CartPole system.While our technique
is able to find the minimum-noise trajectory at 1:6% (represented
by a straight line), the Strategic and Critical Point attacks only
succeed when the provided magnitude of noise exceeds 10%. The
MDP Attack, however, comes close: the smallest noise percentage
seen to generate a successful attack is 1:65% (notably not seen at
1.6%). However, guaranteed failure (attack success at 100%) was
only observed when the noise tolerance reached 2:5%.

Table 3. Results from a set of ablation (masking) experiments for ACAS Xu.
As expected, the noise required for the least-noise unsafe trajectories decreases
as more variables are allowed uncertainty. Moreover, we observe that the
variable � is most vulnerable to noise: it consistently takes a smaller magnitude
of noise across all variables when � is included. Of all experiments when just one
variable is allowed uncertainty, the one where � is noisy requires the least noise
(note that all values are percentages of the allowed range for each variable,
normalized to �1:0; 1:0½ �)

ID � �

A 0.6336 0.6336 0.6328

B >10 ✗ ✗

C ✗ 1.3785 ✗

D ✗ ✗ 2.2520

E 1.2952 1.2886 ✗

F ✗ 0.8474 0.8374

G 2.1413 ✗ 2.1413

Figure 8. Comparison of Bayesian Optimization and Random Sampling for uniform
grid points for ACAS Xu. MinErrSearch iterations are run until a noise limit is reached.
Both techniques perform similarly until the global minimum is approached, beyond
which Bayesian methods perform significantly better.

1https://github.com/davide97l/rl-policies-attacks-defenses
2https://github.com/huanzhang12/ATLA_robust_RL

Research Directions: Cyber-Physical Systems 9

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://github.com/davide97l/rl-policies-attacks-defenses
https://github.com/huanzhang12/ATLA_robust_RL
https://doi.org/10.1017/cbp.2023.5

Next, as many reinforcement learning attack methods seek to
reduce the number of attacked timesteps and maintain attack
success, we compare the number of attacked steps and required
noise percentage across attack strategies. Figure 10 presents the
relationship between attacked steps and noise: intuitively, as the
supplied noise cap increases, the number of successfully attacked
steps could increase (in order to maximize overall attack success).
The Strategic and Critical Point attacks show this relationship; they
were able to generate unsafe trajectories with about 8 attacked
steps. TheMDP Attack, similar to our own, requires planning (and
potentially attacking) all steps of a trajectory of a supplied length;
we limited the Cart Pole trajectories to 15 steps for comparison
with our method.

Overall, the gradient-based strategies failed to find attacks as
stealthy as our method and MDP. The MDP approach empirically
neared the stealthiest possible attack, which was demonstrated by a
comparison with our certified approach. Going forward, we believe
our method can continue to be used to evaluate the robustness of
RL systems and adversarial strategies, especially as this approach
can evaluate networks not trained via reinforcement learning.

Related work

Existing research on the safety of neural network controllers in
cyber-physical systems generally lies in three categories: (1) on the
demonstration of sensor spoofing or feasible perturbations in
specific environments, (2) on anomaly detection algorithms to
filter noisy observations, and (3) on identifying optimal adversarial
perturbations or unsafe initial conditions for an agent. Our work is
most closely related to the last area of research, with a focus on
formal verification.

Neural network verification seeks to prove the properties of neural
networks by relating sets of inputs to all possible sets of outputs. The
formal verification problem has been shown to be NP-Complete
(Katz et al., 2017b), so contemporary work looks at efficient
implementations for practical scalability of verification tools to larger
networks (Bak et al., 2021; Liu et al., 2019; Xiang et al., 2018).

Existing work on adversarial trajectories has focused on
strategies to perturb a sequence of sensed states that empirically
result in unsafe outcomes. Huang et al. (2017) were the first to
show that neural network policies can be susceptible to adversarial
attacks. The authors examined the feasibility of gradient-based
attacks on policies and the transferability of examples across
policies. While they showed that an adversary was able to
effectively decrease accumulated rewards during an episode by
attacking every frame, they did not aim to target specific actions or
undesired states strategically. At the same time, Kos and Song
(2017) evaluated adversarial examples against random noise and
the effectiveness of re-training control policies. Lin et al. (2017)
improved on the Huang et al. attack with methods for selectively
modifying important frames and probabilistically guiding the
agent to a target state. Moreover, Sun et al. (2020) looked to
prediction models to determine the least number of timesteps to
attack. A more recent approach by Zhang et al. (2021) adopts a
MDP to learn the optimal adversarial attack for RL agents. This
process is still empirical in nature, as it relies on the accuracy of the
trained MDP model.

In contrast to these works, each trajectory that our approach
generates ends in an unsafe state. Fundamentally, our approach
is the first to provide certified guarantees. The data that support
the findings of this study are available on request from the
corresponding author.

Conclusion

Neural networks are being increasingly considered in a wide
variety of systems to handle control decisions. However, the
susceptibility of these networks to observation noise limits their
adoption in safety-critical systems. Whereas methods like
adversarial training can increase empirical robustness against
such attacks, they do not offer formal guarantees.

In this paper, we proposed a method to find the minimum-
noise failing trajectory for a neural network control system. Our
approach is restricted to networks with discrete action spaces, and
since the approach essentially constructs a tree of possible

Figure 9. Attack strength v success rate, over 50 trials. The MDP (Zhang et al., 2021),
Critical Point (Sun et al., 2020), and Strategic (lin_tactics_2019) Attacks require a set
noise percentage; as that noise increases, we observe the chance of success
increasing. The first percentage at which we observe a successful attack is 1.65%,
13.2%, and 14.7%, respectively, compared with 1.6% from our method for a
guaranteed 100% success, noise needs to reach 2.5%, 18.5%, and 23.9% respectively.
Increasing the allowed noise percentage does not change the minimum-error
trajectories we obtain with our method.

Figure 10. Comparison among the noise percentage associated with the number of
attacked steps. The simpler Strategic and Critical Point strategies generally required
about 8 attacked steps. The MDP Attack found successful unsafe trajectories at 1.65%,
close to the 1.6% minimal noise found by our method. However, the strategy attacks
all steps within the specified trajectory length, whereas we identified trajectories with
as few as 6 attacked steps.

10 Veena Krish et al.

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5

trajectories with increasing noise values, attack generation can only
succeed when the number of such paths is not too large. When
these restrictions are met, however, our method is able to provide a
strong formal guarantee that no trajectory of smaller noise is
possible from the given start state. We have applied the method to
four systems in order to demonstrate its practical applicability, and
were able to find situations where noise under 1% of an input range
can cause these systems to fail. Our results also lay the groundwork
for the design of more certifiably-robust systems. For instance,
minimum-error unsafe trajectories might be used to retrain
networks, after which analysis could be repeated to increase
provable noise robustness.

Further, the masking experiments where we explored only
attacking specific sensors revealed that some inputs could tolerate
more noise than others. This knowledge could be used to prioritize
deployment of safeguards against spoofing attacks or to determine
where to run anomaly detection systems.

Acknowledgements. This material is based upon work supported by the Air
Force Office of Scientific Research and the Office of Naval Research under
award numbers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-23-1-0066
and N00014-22-1-2156, as well as the Air Force Research Laboratory
Innovation Pipeline Fund. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not reflect the views of the United States government, the Department of
Defense, the United States Air Force or the United States Navy.

Competing interests. Multiple authors of this work have been employed by
the Air Force Research Lab.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/cbp.2023.5

Connections references

Paoletti N and Woodcock J (2023) How to ensure safety of learning-enabled
cyber-physical systems? Research Directions: Cyber-Physical Systems, 1–4.
https://doi.org/10.1017/cbp.2023.2

References

Albarghouthi Aws (2021) Introduction to neural network verification.
Available at http://verifieddeeplearning.com.verifieddeeplearning.com.
arXiv: 2109.10317 [cs.LG].

Althoff M, Frehse G and Girard A (2021) Set propagation techniques for
reachability analysis. Annual Review of Control, Robotics, and Autonomous
Systems 4, 369–395.

Bak S, Liu C and Johnson T (2021) The second international Verification of
Neural Networks Competition (VNN-COMP 2021): Summary and results.
arXiv: 2109.00498, [cs] (August). Available at http://arxiv.org/abs/2109.
00498 (accessed 28 October 2021).

Brix C, Müller MN, Bak S, Johnson TT and Liu C (2023) First three years of
the international Verification of Neural Networks Competition (VNN-
COMP). Available at https://arxiv.org/abs/2301.05815.

Brochu E, Cora VM and de Freitas N (2010) A tutorial on Bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning. arXiv: 1012.2599 [cs.LG].

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J and
Zaremba W (2016) Openai gym. eprint: arXiv:1606.01540.

Carlini N and Wagner D (2018) Audio adversarial examples: targeted attacks
on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, pp. 1–7.

Cheng M, Yi J, Chen P-Y, Zhang H and Hsieh C-J (2020) Seq2sick:
evaluating the robustness of sequence-to-sequence models with adversarial
examples. In Proceedings of the AAAI conference on artificial intelligence,
vol. 34, pp. 3601–3608.

Duggirala PS and Viswanathan M (2016) Parsimonious, simulation based
verification of linear systems. In International conference on computer aided
verification. Springer, pp. 477–494.

Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, Prakash A,
KohnoT and SongD (2018) Robust physical-world attacks on deep learning
visual classification. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1625–1634.

Frazier PI (2018) A tutorial on Bayesian optimization. Available at https://arxi
v.org/abs/1807.02811.

Gong Y, Li B, Poellabauer C and Shi Y (2019) Real-time adversarial attacks.
ArXiv: 1905.13399, [cs, eess] (June). Available at http://arxiv.org/abs/1905.
13399 (accessed 26 October 2021).

Goodfellow IJ, Shlens J and Szegedy C (2014) Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572.

Huang S, Papernot N, Goodfellow I, Duan Y and Abbeel P (2017)
Adversarial attacks on neural network policies. arXiv preprint arXiv:
1702.02284.

Julian KD, Lopez J, Brush JS, Owen MP and Kochenderfer MJ (2016) Policy
compression for aircraft collision avoidance systems. In 2016 IEEE/AIAA
35th digital avionics systems conference (DASC). https://doi.org/10.1109/
DASC.2016.7778091.

Katz G, Barrett C, Dill D, Julian K and Kochenderfer M (2017a) Reluplex: an
efficient SMT solver for verifying deep neural networks. ArXiv: 1702.01135,
[cs] (May). Available at http://arxiv.org/abs/1702.01135 (accessed 30
October 2021).

Katz G, Barrett C, Dill DL, Julian K and Kochenderfer MJ (2017b) Reluplex:
an efficient SMT solver for verifying deep neural networks. In International
conference on computer aided verification. Springer.

Kos J and Song D (2017) Delving into adversarial attacks on deep policies.
arXiv preprint arXiv:1705.06452.

Lin Y-C, Hong Z-W, Liao Y-H, Shih M-L, Liu M-Y and Sun M (2017)
Tactics of adversarial attack on deep reinforcement learning agents.
In Proceedings of the 26th international joint conference on artificial
intelligence, 3756–3762.

Liu C, Arnon T, Lazarus C, Strong C, Barrett C and Kochenderfer MJ (2019)
Algorithms for verifying deep neural networks. arXiv preprint arXiv:1903.
06758.

MadryA,MakelovA, Schmidt L, TsiprasD andVladuA (2017) Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.
06083.

Miller WT (1989) Real-time application of neural networks for sensor-based
control of robots with vision. IEEE Transactions on Systems, Man, and
Cybernetics 19, 825–831.

Moosavi-Dezfooli S-M, Fawzi A, Fawzi O and Frossard P (2017) Universal
adversarial perturbations. ArXiv: 1610.08401, [cs, stat] (March). Available at
http://arxiv.org/abs/1610.08401 (accessed 26 October 2021).

Morel N, Bauer M, El-Khoury M and Krauss J (2001) Neurobat, a predictive
and adaptive heating control system using artificial neural networks.
International Journal of Solar Energy, 21(2–3), 161–201.

Nassi B, Bitton R, Masuoka R, Shabtai A, and Elovici Y. 2021. Sok: security
and privacy in the age of commercial drones. In 2021 IEEE symposium on
security and privacy (SP). IEEE, pp. 1434–1451.

Owen MP, Panken A, Moss R, Alvarez L and Leeper C (2019) ACAS Xu:
integrated collision avoidance and detect and avoid capability for UAS. In
2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). https://
doi.org/10.1109/DASC43569.2019.9081758.

PalancarMC, Aragon JM andTorrecilla JS (1998) Ph-control system based on
artificial neural networks. Industrial & Engineering Chemistry Research 37,
2729–2740.

Papernot N, McDaniel P and Goodfellow I (2016) Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples.
arXiv: 1605.07277, [cs] (May). Available at http://arxiv.org/abs/1605.07277
(accessed 26 October 2021).

Pinto L, Davidson J, Sukthankar R and Gupta A (2017) Robust adversarial
reinforcement learning. In International conference on machine learning.
PMLR, pp. 2817–2826.

Raffin A, Hill A, Gleave A, Kanervisto A, ErnestusM andDormannN (2021)
Stable-baselines3: Reliable reinforcement learning implementations. Journal

Research Directions: Cyber-Physical Systems 11

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2023.5
https://doi.org/10.1017/cbp.2023.2
http://verifieddeeplearning.com.verifieddeeplearning.com
http://arxiv.org/abs/2109.00498
http://arxiv.org/abs/2109.00498
https://arxiv.org/abs/2301.05815
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1905.13399
http://arxiv.org/abs/1905.13399
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
http://arxiv.org/abs/1702.01135
http://arxiv.org/abs/1610.08401
https://doi.org/10.1109/DASC43569.2019.9081758
https://doi.org/10.1109/DASC43569.2019.9081758
http://arxiv.org/abs/1605.07277
https://doi.org/10.1017/cbp.2023.5

of Machine Learning Research 22, 1–8. http://jmlr.org/papers/v22/20-1364.
html.

Rasmussen CE and Williams CKI (2006) Gaussian processes for machine
learning. MIT Press.

Ravaioli U, Cunningham J, McCarroll J, Gangal V, Dunlap K and Hobbs K
(2022) Safe reinforcement learning benchmark environments for aerospace
control systems. In IEEE aerospace conference.

Shin D-H and Kim Y (2004) Reconfigurable flight control system design using
adaptive neural networks. IEEE Transactions on Control Systems Technology
12, 87–100.

Sun J, Zhang T, Xie X, Ma L, Zheng Y, Chen K and Liu Y (2020) Stealthy and
efficient adversarial attacks against deep reinforcement learning. arXiv:
2005.07099, [cs] (May). Available at http://arxiv.org/abs/2005.07099
(accessed 28 October 2021).

Xiang W, Musau P, Wild AA, Lopez DM, Hamilton N, Yang X, Rosenfeld J
and Johnson TT (2018) Verification for machine learning, autonomy, and
neural networks survey. arXiv preprint arXiv:1810.01989.

Zhang H, Chen H, Boning D and Hsieh C-J (2021) Robust reinforcement
learning on state observations with learned optimal adversary. arXiv preprint
arXiv:2101.08452.

12 Veena Krish et al.

https://doi.org/10.1017/cbp.2023.5 Published online by Cambridge University Press

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/2005.07099
https://doi.org/10.1017/cbp.2023.5

	Provable observation noise robustness for neural network control systems
	Introduction
	Background
	Finding minimum-noise adversarial trajectories
	Problem statement
	Problem 1: Minimum noise from a given state
	Mode 1: From an initial state, forward in time
	Mode 2: From a final state, backward in time
	Problem 2: Minimum noise from an initial set

	Evaluation
	Environments
	Neural network verification
	Simulation direction and trajectory length

	Results
	ACAS Xu
	Dubins Rejoin
	Cart Pole
	Lunar Lander
	Properties of unsafe trajectories
	Positions and frequency of required noisy readings
	Ablation experiments: Per-variable noise

	Effectiveness of Bayesian optimization
	Comparisons with reinforcement learning adversarial attack methods

	Related work
	Conclusion
	Connections references
	References

