Can Attention Masks Improve Adversarial Robustness?
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Abstract

Deep Neural Networks (DNNs) are known to be susceptible
to adversarial examples. Adversarial examples are maliciously
crafted inputs that are designed to fool a model, but appear
normal to human beings. Recent work has shown that pixel
discretization can be used to make classifiers for MNIST highly
robust to adversarial examples. However, pixel discretization fails
to provide significant protection on more complex datasets. In this
paper, we take the first step towards reconciling these contrary
findings. Focusing on the observation that discrete pixelization in
MNIST makes the background completely black and foreground
completely white, we hypothesize that the important property
for increasing robustness is the elimination of image background
using attention masks before classifying an object. To examine
this hypothesis, we create foreground attention masks for two
different datasets, GTSRB and MS-COCO. Our initial results
suggest that using attention mask leads to improved robustness.
On the adversarially trained classifiers, we see an adversarial
robustness increase of over 20% on MS-COCO.

Introduction

Deep Neural Networks are employed in a wide range of applica-
tions ranging from autonomous systems to trading and healthcare.
This has resulted in an increased attention to their security. One
of the primary focuses of these efforts has been defense against
adversarial examples. Adversarial examples (Szegedy et al. 2014)
can be generated by adding carefully-crafted imperceptible noise
to a normal input example. Such an adversarial example can be
used to trigger a misclassification on a target model for image
classification tasks (e.g., a road-sign classifier in a self-driving
car). Many techniques have been developed to tackle this prob-
lem (Xie et al. 2019; Madry et al. 2018; |Lamb et al. 2018), one
of the popular one being adversarial training.

In analyzing an adversarially trained DNN on MNIST,
Madry et al. (Madry et al. 2018)) found that the first layer
filters turned out to be thresholding-filters that were acting
as a de-noiser for the grayscale MNIST images. Follow up
experiments by Schott et al. (Schott et al. 2018) showed that
training a DNN with binarized MNIST images (where each pixel
was discretized to be either made completely black or completely
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Figure 1: Visualizing images from the MNIST dataset. The
first row contains natural images, the second row contains
corresponding adversarial images and the third row contains
binarized adversarial images (threshold = 0.5). Binarization
removes almost all the adversarial noise.

white using a static threshold) resulted in significantly improved
adversarial accuracy without any adversarial training or negative
impact on normal performace. In other words, a pipeline that
first thresholds each pixel in an MNIST image to 1 or 0 and then
classifies the resulting image with a naturally trained model has
a very high degree of adversarial robustness, without requiring
any adversarial training. Subsequent works, however, found
that a simple binarization was not effective for more complex
datasets such as CIFAR-10 (Chen et al. 2018).

In contrast to previous work, we observe that binarization on
MNIST acts as an approximation for the process of foreground-
background separation. Figure [T] presents a sample image from
the MNIST dataset. MNIST dataset consist of 28 x 28 pixel
images of handwritten white digits on a black background and
are among the simplest datasets in ML. Adversarial attacks on
the MNIST typically do not distinguish between the digits and
the background and may similarly manipulate both to achieve
their goal. When examining the adversarial noise in MNIST
adversarial examples for a naturally-trained model, we see that
the adversarial noise is spread throughout the image, including
in background regions of the image that we might not consider
to carry any predictive signals. Binarization on MNIST as a
pre-processing step snaps most of the background pixels back
to the original value on which the model was trained (i.e., 0),
hence reducing the attack surface.

Therefore, it may be more accurate to characterize binarization



on MNIST as foreground-background separation rather than sim-
ple pixel discretization for more complex image datasets. If the
hypothesis is true, then we should see improved robustness on
other datasets by simply separating the background from the fore-
ground and masking the background prior to training and classifi-
cation, i.e., applying a foreground-attention mask on the dataset.

Towards validating the above hypothesis, given a classifier
and a dataset, we introduce an additional pre-processing step
where a foreground attention mask is applied to the model’s
input before classification. A challenge in testing our hypothesis
is determining the foreground attention mask. Unfortunately,
most image datasets on which adversarial testing is done (e.g.,
CIFAR-10, ImageNet) lack sufficient ground truth data for
foreground attention masks. To address the challenge, we
generate two datasets with foreground attention masks from
existing datasets: The German Traffic Sign Recognition (GT-
SRB) (Stallkamp et al. 2012) and MS-COCO (Lin et al. 2014).
For the GTSRB dataset, we took advantage of the typical color
distribution in images and that a road sign often lies in the center
of the image, and used them to design a custom attention mask
generator by doing random sampling of pixels near the center
of the image along with a min cut-max flow algorithm to create
the foreground attention mask. For the MS-COCO dataset, we
use the segmentation masks included with the dataset to create a
cropped image of the object of interest and its foreground mask.

Our preliminary results suggest that a classification pipeline
that utilizes foreground attention masks experiences improved
adversarial robustness with, at worst, no impact on natural
accuracy. On the naturally trained classifiers, the adversarial
accuracy improves by 0.73% on MS-COCO and around 19.69%
on GTSRB. Robustness improvements were also found on
combining usage of attention masks with adversarial training.
Thus, this paper makes the following contributions:

e We create two datasets based on the GTSRB and MS-COCO
that allow exploration of attention mask effects on adversarial
examples. These datasets are available at |[link].

o We take the first step toward exploring the effect of attention
masks on improving model robustness in image classification
tasks. We show that attention masks have certain effect on
improving adversarial performance against PGD adversary.

Background

Discrete Pixelization Defenses. Developing adversarial defenses
towards robust classification has received significant attention in
recent years (Madry et al. 2018; |Liao et al. 2018)). Among these,
defense methods that pre-process inputs to improve robustness
are potentially attractive because the pre-processed input can
be passed to existing classifiers for improved robustness. Un-
fortunately, some of these methods were vulnerable to stronger
adaptive adversarial attacks (Athalye, Carlini, and Wagner 2018},
raising doubts on the effectiveness of pre-processing strategies.
One pre-processing strategy that has stood attacks well against
stronger adaptive adversarial attacks is that of binarization for
the MNIST dataset. Unfortunately, binarization, which converts
each pixel value to fewer bits did not provide a significant
benefit on more complex datasets and, in some cases, negatively
impacted test accuracy (Chen et al. 2018]). Chen et al. provide

theoretical insights into the phenomenon, concluding that
discrete pixelization is unlikely to provide significant benefit.
Semantic Segmentation. Semantic segmentation of images
has applications in diverse fields like biomedical imaging
(Ronneberger, Fischer, and Brox 2015). (Wu et al. 2019;
Chen et al. 2017) describe semantic segmentation techniques
for complex real-word datasets like MSCOCO and Cityscapes.
However, (Amab, Miksik, and Torr 2018) have shown that DNN-
based segmentation pipelines can be susceptible to adversarial
attacks, though other work has shown that such attacks may be
successfully detected (Xiao et al. 2018), potentially providing a
defense. We note that, unlike our work, prior work on robustness
of semantic segmentation looked at robustness of segmentation
model itself and not the impact of foreground-background
separation on robustness of classification of a foreground object.
Attention masks. According to work by Xie et al. on feature
denoising, they discovered that adversarial noise causes machine
learning models to focus on semantically uninformative
information in the input, whereas the opposite is true for natural
clean inputs. Thus, rather than relying on the model to identify
relevant input features, we explore if we can force the network
to focus on important portions of the image (e.g., the foreground
object). Harley et al. (Harley, Derpanis, and Kokkinos 2017)
proposed the idea of segmentation-aware convolution networks
that rely on local attention masks, which are generated based on
color-distance among neighboring pixels, and found that it can
improve semantic segmentation and optical flow estimation. Our
work aims to understand if attention masks can also be useful
for improvement of robustness of image classification.

Our Approach

In this work, our goal is to examine if isolating predictive signals
in the form of foreground features has benefits in terms of
adversarial robustness while having minimal impact on model
performance on natural inputs. We examine, using two datasets,
that training a model on foreground pixels helps it perform
well not only on natural images, but makes it robust against
adversarial images as well.

Let X be a set of images drawn from a distribution.
Let’s consider the task of image classification defined on X.
Traditionally, in image classification, we restrict each image to
contain only one object. An image z(¥) € X can be divided into
foreground and background pixels. By definition, foreground
pixels are pixels that are a part of the object and every other
pixel can be considered as a part of the background. In this
paper we make the assumption that the foreground pixels, on
their own, carry sufficient predictive power for the task of
image classification. Additionally, removing background pixels
restricts the input space that the adversary can attack, inhibiting
its ability to trigger misclassification in the target model.

For an image z(® € X of resolution m x n, let’s define a

foreground image xg)G = F(2®), where
(@) e (@) - o)
Fz®)= Ty 25, €Sk j=l.mk=1.n
0 else
where, S;% is the set of foreground pixels for image (). We

generate X o containing foreground images xE;)G vz € X,
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Based on the above, we evaluate two class of models: (1) model
trained on X, (2) model trained on X . For both, we perform
Natural (N) and Adversarial (A) training.

We assume access to foreground masks in our experiments.
Thus, our work provides an upper bound on the potential benefit
that can be provided by foreground attention masks on model
robustness, assuming foreground attention masks can be robustly
found. There is some potential hope since recent work has
shown that adversarial attacks may be successfully detected on
segmentation algorithms (Xiao et al. 2018) using statistical tests,
potentially providing a basis for a defense.

Dataset Creation with Foreground Masks

MS-COCO. We pre-process the MS-COCO dataset to make it
compatible with the task of image-classification. Particularly,
we use the following pre-processing steps:

e We make use of the semantic segmentation masks and object
bounding box annotations to generate image, mask, label
pairs such that each image contains object(s) of one label
only, or in other words, the mask corresponding to an image
contains annotations for one object only.

e To deal with objects having overlapping bounding box
regions, we explicitly black-out pixels corresponding to the
extra objects.

e We adjust the crop dimensions in order to extract square image
patches, and resize all the extracted image patches to 32 x 32.

e Due to high class-imbalance in the resultant dataset, we
ignore the person class (over frequent) and short-list top 10
classes from the remaining classes based on the frequency.

We call this modified MS-COCO dataset as MS-COCO-IC.
Table [T] shows the statistics for this dataset. The images in this
dataset contain =~ 56% foreground pixels. Figure [3| gives an
example of an original image, the cropped image, and the final
image that is used for training a classifier.

Class Number of Images
Train Test

Chair 21674 11077
Car 18498 9594
Book 12094 6188
Bottle 10923 5735
Dinning table 10291 5274
Umbrella 6510 3309
Boat 5531 2797
Motorcycle 5340 2703
Sheep 4748 2432
Cow 4391 2162
Total 100000 51271

Table 1: Number of images per class in the train and test set of
our MSCOCO-IC dataset.

GTSRB. The German Traffic Sign Recognition Benchmark (GT-
SRB) is a dataset containing 50,000 color images of 43 different

Table 2: Visualizing examples in the GTSRB-IC dataset. We
display the natural image, foreground mask and the foreground
masked image from left to right.

Table 3: Visualizing examples in the MS-COCO-IC dataset. We
display the original image from the MS-COCO dataset, cropped
image of object of interest, and the foreground masked image
from left to right.

classes of road signs, with high class imbalance. Images in GT-
SRB model various viewpoints and light conditions. We use a
customized segmenter based on the graph cut algorithm to ob-
tain foreground masks. One favorable aspect of GTSRB is that
majority of the traffic signs are centrally located in the image,
have regular shapes, and usually possess a sharp color in contrast
to the background. These features match the assumptions of our
customized segmenter. The images in this dataset contain ~~25%
foreground pixels. We associate the low percentage of foreground
pixels to the imperfections of our ad hoc segmenter. Figure 2]
gives an example of an image, computed mask by our segmenter,
and the final image that is used for training a classifier.

Results

For our experiments, we train two set of models: (1) on natural
images; (2) on foreground masked image, both naturally and ad-
versarially. For both, we use the VGG-19 classifier. We evaluate
these models against a 10-step L, bounded PGD adversary with
step size of % and e= %. Treating the performance of models
trained on X as a baseline, we calculate potential gains in robust-
ness in the models trained on X . We repeat the above experi-
ments for both GTSRB-IC and MS-COCO-IC datasets. Note that
in the case of X p models, the adversary is only given access
to the foreground pixels. We summarize our results in Table [}

MS-COCO-IC. We can observe from the results that both the
naturally trained classifiers exhibit comparable vulnerability to
PGD adversary. However, in case of the adversarially trained clas-
sifiers, natural and adversarial accuracy increases by 11.41% and
22.82% respectively, on using foreground attention masks. This
validates our hypothesis that foreground attention has a positive
effect on a model’s classification performance and robustness.

GTSRB-IC. Similar to the previous set of results, we see that
the model adversarially trained using X ¢ is more robust to
a PGD adversary than a model adversarially trained using X



Data Training MSCOCO-IC GTSRB-IC
Natural PGD Natural PGD
X N 7946%  228%  98.04% 18.69%
Xra N 81.64% 3.01% 98.04% 38.38%
X A 61.51% 3080% 89.54% 55.25%
Xra A 7292% 53.62% 91.20% 64.57%

Table 4: Comparing adversarial robustness of models trained
on natural images versus foreground masked images. For
both datasets. we observe increased robustness against a PGD
adversary when the model and the adversary have access to
foreground features only.

(4+9.32%). Additionally, we see that the model naturally trained
on X ¢ exhibits considerable improvement in robustness as
compared to the model naturally trained on X (+19.69%).

Conclusion

We study the use of foreground attention masks for improving
the robustness of deep neural networks against L.,-bounded
PGD attack. We develop two new datasets based on MS-COCO
and GTSRB, to examine these effects. Our preliminary results
suggest positive effects in using foreground masks for improving
adversarial robustness against PGD adversary. For an adversar-
ially trained model on the MS-COCO-IC dataset, foreground
attention masks improved adversarial accuracy by 21.8%. For
the GTSRB-IC dataset, when adversarially training a model with
foreground masked images, we observe a smaller improvement
of 1.7% in adversarial accuracy. Initial results are promising how-
ever, further work must be done to verify the effect of foreground
attention masks on adversarial robustness and to develop an re-
liable method to extract these foreground masks automatically.

Prior work by Simon-Gabriel e al. (Simon-Gabriel et al|
2018)) suggest that our masking technique improves adversarial
robustness due to a reduction in the number of input features.
Against a first-order adversary (e.g., PGD attack), they establish
that the adversarial robustness scales as 1/v/d where d is the
number of input features. Therefore, masking some of the input
features should improve adversarial robustness to some degree.
For future work, we intend to investigate this relationship
further as we believe that the relative importance of a feature
for classification may suggest additional robustness. Also, this
relationship might help better explain certain trends that we
observe in the results. Such work will help better understand
the usefulness of foreground masks in context of adversarial
robustness against first-order adversaries.
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