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3 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
4 Galois Inc., OR, USA

Abstract. Recent work demonstrated that using Koopman surrogate models
to falsify black-box models against signal temporal logic specifications is highly
effective. However, the bottleneck of this approach arises from the mixed-
integer linear program optimization used to synthesize the falsifying trajectory.
The complexity of mixed-integer linear programming can be prohibitive, in-
creasing exponentially with the number of binary variables. In this work, we
introduce a new weighted robustness encoding that eliminates the need for
binary variables. We also propose a new weighting scheme for Koopman opera-
tor linearization that aims to compensate for inaccuracies in the learned model.
We evaluate our approach using a set of benchmarks from the ARCH falsifica-
tion competition. Our weighting methods significantly improve computational
efficiency and reduce the number of simulations needed to find falsifying traces.

Keywords: Cyber-physical systems, signal temporal logic, falsification, Koopman
operator linearization, linear programming relaxation

1 Introduction

Trusted autonomy of cyber-physical systems in safety-critical environments has be-
come a rapidly growing area of research and development. Safety requirements for
such systems are often specified using signal temporal logic (STL) formulae [26]. STL
enables the rigorous expression of complex safety specification by combining temporal
operators (e.g., globally, eventually, until), logical operators (e.g., and, or, not), and
continuous-time predicates over system variables.

However, the verification of cyber-physical systems remains challenging due to the
inherent complexity of system dynamics and the temporal nature of the specifications.
Traditional techniques often involve exhaustive exploration of the system’s state space
or discrete event sequences, which can be computationally prohibitive for large-scale,
continuous systems with black-box components.

Orthogonal to formal verification, which aims to prove a system’s correctness, falsifi-
cation offers a promising approach for addressing the challenges that arise when reason-
ing about the safety of such systems. Falsification aims to find a trajectory of a system
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that violates a safety property or leads to a bad state. Due to the complexity and often
black-box nature of many real-world systems, the majority of works focus on numerical
methods for falsification with STL safety requirements [1,2,30,37]. Recent work [6] has
shown great promise in falsifying such systems by constructing a surrogate model using
Koopman linearization and deploying it in a robustness-guided optimization. In par-
ticular, inspired by previous work on controller synthesis for STL requirements [34,35],
the authors formulate the optimization problem using binary variables to encode the ro-
bustness of STL formulae and solve it using mixed-integer linear programming (MILP).

It is well known that MILP, in the general case, is NP-hard [15], which hinders
its applicability, particularly as the problem size increases. To address this issue,
we propose a new heuristic encoding termed weighted robustness encoding, which
eliminates the need for binary variables, leading to a linear program. The proposed
approach is iterative: we refine the optimization problem based on critical predicates
and the corresponding time points from previous iterations. By assigning weights to
predicates and time points, we prioritize satisfaction or violation of specific predicates
at particular times, effectively guiding the optimization process. We show that our
linear relaxation of the MILP formulation significantly reduces computational efforts,
particularly for complex requirements. For instance, in the case of the CC5 benchmark
from the ARCH falsification competition [11], and with a discretization time step
of 2 seconds, our weighted encoding requires only 2.32 seconds, compared to 1705
seconds for the MILP encoding.

To further improve the falsification process, we introduce a novel weighting scheme
for learning the Koopman linearized system. Our key observation is that we can
achieve more effective modeling of system dynamics by increasing the weighting of crit-
ical trajectories, i.e., trajectories that are closer to falsifying the system. Furthermore,
we extend our method to the weighting of states, where higher accuracy is desired in
states more prominent in the STL requirement. The weighting scheme is highly effec-
tive, significantly reducing the number of simulations required to find a falsifying trace
for all challenging ARCH benchmarks, where 10 or more simulations are required.

2 Related Work

Falsification techniques have recently seen great advancements, with several ap-
proaches developed to improve performance and scalability. Pioneer tools such as
S-TaLiRo [3] and Breach [10] rely on a mixture of randomized simulations and
optimization approaches to guide the search towards a falsifying trace. Subsequent
tools with different strategies have since been developed. The tool falsify [40] adopts
a grey-box method to learn the system’s behavior and is implemented with a deep
reinforcement learning algorithm. ForeSee [42] uses a Monte-Carlo tree search to
specifically address the scale problem [14] within the domain of falsification. Falstar [12]
gradually scales inputs based on a guided search that adapts to local complexity.

Recent approaches utilize model learning, such as surrogate probabilistic models
with Bayesian optimization [9,27], mealy machines [39], and system identification
techniques [28]. A promising recent work by Bak et al. [6] leverages Koopman lin-
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earization techniques to learn a surrogate model and synthesizes a falsifying trace
using MILP optimization.

However, MILP complexity poses significant challenges for scalability. Researchers
have since focused on mitigating this issue. Kurtz et al. [20] propose a new encoding
that unintuitively increases the number of binary variables but results in a tighter
convex relaxation. Conversely, they later suggest yet another encoding that reduces the
number of binary variables [21], offering its own benefits. Several works aim to elimi-
nate the need for binary variables altogether. Notable works include heuristic methods
such as smooth approximations of robustness with gradient-based methods [16,23,32],
convex-concave programming [38], differential dynamic programming [19], and control
barrier functions [25]. Yet, these heuristic approaches overlook system-specific infor-
mation. In contrast, Saha and Julius [36] propose an iterative approach that leverages
such information to refine adaptive optimization. However, the approach has limita-
tions, often incurring a large number of iterations or failing to converge to a desired
solution. In this work, we address these limitations with our new iterative strategy.

3 Problem Formulation

In this work, we consider general black-box cyber-physical systems. We view a system
M as a mapping from input signals u(t)∈U to output signals y(t)∈Rl, where U is
a compact set of input values (input space) at each point in time. A bounded-time
simulation of a system for time horizon T is then denoted by:

y(t)=M
(
u(t)

)
. (1)

Note that the set of input signals can contain time-varying control inputs, external
inputs, and/or initial conditions. We represent a trajectory of the system by a tuple
τ =(u(t),y(t)).

Specifications are used to describe the desired system behavior and are represented
as signal temporal logic formulae [26]:

Definition 1 (Signal Temporal Logic). Given a set of atomic predicates p∈A
which are defined as p :=f(y)>0, where f :Rl →R is a nonlinear function, the syntax
for a signal temporal logic formula is

φ :=True
∣∣ p

∣∣ ¬φ
∣∣ φ1∧φ2

∣∣ □[a,b]φ
∣∣ ♢[a,b]φ

∣∣ φ1U[a,b]φ2,

where a and b with b≥a are non-negative scalars denoting time bounds. For a signal
y(t):R≥0 →Rl, the semantics of STL is defined as follows:

y(t) |=p ⇔ f(y(0))>0
y(t) |=¬φ ⇔ ¬(y(t) |=φ)

y(t) |=φ1∧φ2 ⇔ (y(t) |=φ1)∧(y(t) |=φ2)
y(t) |=φ1U[a,b]φ2 ⇔ ∃c∈ [a,b] :y(t+c) |=φ2

∧ ∀d∈ [0,c):y(t+d) |=φ1.
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Moreover, the semantics for the finally operator ♢[a,b]φ :=True U[a,b]φ and the globally
operator □[a,b]φ :=¬♢[a,b]¬φ directly follows from the semantics of the until operator
φ1U[a,b]φ2.

To guide the search toward signals that violate the specification, we use the
quantitative robustness for temporal logic [13], which specifies how robustly a signal
satisfies an STL formula.

Definition 2 (Robustness). The quantitative robustness semantics of STL is rep-
resented by a function Q(φ,y(t)) that maps an STL formula φ and a signal y(t) to a
scalar value. This function is recursively defined as follows:

Q(True,y(t)) := ∞
Q(p,y(t)) := f(y(t))

Q(¬φ,y(t)) := −Q(φ,y(t))
Q(φ1∧φ2,y(t)) := min

(
Q(φ1,y(t)),Q(φ2,y(t))

)
Q(φ1∨φ2,y(t)) := max

(
Q(φ1,y(t)),Q(φ2,y(t))

)
Q(□[a,b]φ,y(t)) := min

c∈[t+a,t+b]
Q(φ,y(c))

Q(♢[a,b]φ,y(t) := max
c∈[t+a,t+b]

Q(φ,y(c))

Q(φ1U[a,b]φ2,y(t)) := max
c∈[t,t+b]

min
(

Q(φ2,y(c)),

min
d∈[c−a,c]

Q(φ1,y(d))
)

.

The robustness measures the extent to which a signal y(t) satisfies an STL formula
φ, where Q(φ,y(t))≥0 entails satisfaction y(t) |=φ, and larger values for Q(φ,y(t))
indicate stronger satisfaction.

Our overarching goal is to solve the falsification task, which is defined as follows:

Problem 1 (Falsification). Given a black-box model M as in (1), a system specification
in the form of a signal temporal logic formula φ as in Def. 1, and a set of uncertain
inputs U, falsification attempts to find an input signal u(t) ∈ U such that the
corresponding output y(t)=M(u(t)) violates the specification, y(t) |̸=φ.

Recent work by Bak et al. [6] proposed a new approach for the falsification of
black-box cyber-physical systems using surrogate Koopman models. The approach
iteratively constructs a Koopman model MK from system trajectories and uses this
model to determine critical inputs that maximally violate the system specification
by minimizing the robustness in Def. 2.

Adopting an abstracted view, the dynamics of the surrogate Koopman model can
be represented by a linear discrete-time system

yk+1 =MK(yk,uk), (2)
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where k∈{1,...,n} is the time index for a discretization with time step size ∆t. We
use n to denote the number of time indices of the system for a time horizon T .

The surrogate approach in [6] encodes the robustness of STL formulae over the
Koopman surrogate models using a MILP formulation. This is made possible because
the model dynamics are linear, and the min() and max() operators that define the
robustness in Def. 2 can be encoded using binary variables and the Big-M notation.
Consider predicates of linear nature, such that p := f(y) ≥ 0 5. The encoding for
predicates, and the min() and max() operators is defined as:

Predicate Encoding. For each atomic predicate p in the STL formula φ, and for
each time index k, a continuous decision variable rp

k represents the robustness of the
predicate at time index k, such that:

rp
k =f(yk). (3)

Minimum Operator Encoding. Consider a minimum operator rφ =min(rφ1,rφ2,
...,rφm) where rφi represents the robustness of subformulas. The following constraints
can be used to encode the minimum operator, where zi ∈{0,1} are auxiliary binary
variables, and M is a large positive constant:

rφ ≤rφi ∀i∈{1,...,m}, (4a)
rφi −M(1−zi)≤rφ ≤rφi +M(1−zi) ∀i∈{1,...,m}, (4b)
m∑

i=1
zi =1. (4c)

Maximum Operator Encoding. Similarly, for rφ =max(rφ1,rφ2,...,rφm) where
rφi represents the robustness of subformulas, the constraints are as follows:

rφ ≥rφi ∀i∈{1,...,m}, (5a)
rφi −M(1−zi)≤rφ ≤rφi +M(1−zi) ∀i∈{1,...,m}, (5b)
m∑

i=1
zi =1. (5c)

We remark that in literature, MILP robustness encoding is most often used for
controller synthesis, where the goal is to maximize the satisfaction of the STL formula.
Falsification and controller synthesis are intrinsically connected, as falsifying an STL
formula is equivalent to satisfying its negation. Additionally, reasoning over satisfac-
tion is intuitively more straightforward to understand, as it directly aligns with the
goal of meeting specified requirements. For this reason, we formulate the falsification
problem in terms of maximizing the satisfaction of the negated specification:
5 Alternatively, predicates can be any convex or even nonlinear function for which

corresponding solvers can be leveraged.
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Problem 2 (Robustness Optimization). Given a surrogate Koopman model MK, a
(negated) system specification in the form of a signal temporal logic formula φ, and
a set of uncertain inputs, maximize the satisfaction (i.e., robustness) of the system
specification subject to system constraints, i.e.,

max
u(t)∈U

Q(φ,y(t))

s.t. yk+1 =MK(yk,uk) ∀k∈{1,...,n}.
(6)

For the remainder of this paper, we therefore focus on the satisfaction of STL formulas
rather than violation.

4 Weighted Robustness Encoding

In this section, we propose a new heuristic approach for solving Prob. 2, using
weighted robustness encoding. The encoding relies on an iterative approach, which
is incorporated within the falsification loop of the work in [6], yielding the overall
framework summarized in Alg. 1. First, we generate a random trajectory (Line 1)
that is used to initialize the training set (Line 2). Next, we learn a Koopman model
(Line 5) and then use our new weighted robustness encoding to optimize for a critical
trajectory that we suspect to satisfy the (negated) system specification (Line 6). Note
that we use Qw to denote weighted robustness. If the trajectory fails to satisfy (falsify)
the system, we look to identify the critical predicates and corresponding critical time
indices (Line 12). We define the critical predicates p∈Acrit as all predicates that incur
negative robustness on the system and prevent its satisfaction (falsification). The
corresponding critical time index kp represents the time at which the system violates
the critical predicate the most. We further identify a critical value vp for each critical
predicate as the minimal robustness value for the predicate or the robustness value at
the critical time index. The critical value is then used to update the offset and refine
our heuristic approach at the corresponding critical time index (Line 13). We iteratively
modify each identified critical predicate in the STL formula in search of all critical
predicates (Line 14–15). At the same time, the previously extracted critical trajectory
is used to refine the learned Koopman model (Line 18), and the process is repeated.

In this work, we look to eliminate the need for binary variables in traditional MILP
encoding. To this end, we introduce a weighted robustness encoding that replaces
equations (3), (4) and (5). Our approach is inspired by the previous work of Saha
and Julius [36], where constraints are iteratively added for the most critical predicate
p to enforce satisfaction (violation) at the corresponding critical time index kp:

f(ykp)≥0. (7)

The approach can be easily modified to maximize satisfaction (violation) of each con-
straint by adding a decision variable rp

kp to each constraint which is to be maximized,
such that:

f(ykp)≥rp
kp. (8)

In the remainder of this section, we detail our approach and highlight how we overcome
the limitations of Saha’s approach [36].
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Algorithm 1: Koopman Falsification with Weighted Robustness
Data: Black-box CPS modelM, (negated) STL formula

φ, input space U, time horizon T , maximum number of simulations Nmax
Result: Counterexample trajectory τ

1 τ←RunSimulation(M,RandomInput(U),T)
2 T ←{τ} // Initialize set of training data
3 B←{0}m, W←{1}m×n

4 for i=1 to Nmax do
5 MK←LearnKoopmanModel(T )
6 u∗←argmax

u(t)∈U
Qw(φ,y(t),B,W) s.t. yk+1 =MK(yk,uk)

7 τ←RunSimulation(M,u∗,T)
8 if Q(φ,τ)>0 then
9 return τ // Counterexample found

10 end
11 do
12 p, kp,vp←getCriticalPredTimes(φ,τ)
13 bp←bp+vp, wp

k←wp
k+vp

14 p∗←p−vp

15 φ∗←φ[p∗→p] // Update STL with modified predicate
16 while Q(φ∗,τ)<0
17 B←{b1,b2,...,bm}, W←{w1

1,w2
1,...,wm

1 ,wm
2 ,...,wm

n }
18 T ←T ∪{τ} // Update trajectory set
19 end

4.1 Weighted Predicate Encoding

We augment Eq. (3) by introducing offsets B = {b1,b2,...,bm} for each predicate p
along with weights W ={w1

1,w2
1,...,wm

1 ,wm
2 ,...,wm

n } for each predicate and time index
k, such that:

rp
k =wp

k (f(yp
k)+bp). (9)

The offset bp, first introduced by Bak et al. [6], linearly shifts predicate values to
counteract inaccuracies in the learned Koopman model. For our work, it serves a
dual purpose, where the offset adjusts for both errors in the Koopman model and
the heuristic robustness encoding. The newly introduced weight wp

k is used to favor
the satisfaction of particular predicates at specific time indices. Prior to the first
iteration of the main loop in Alg. 1, all offsets and weights are initialized to zero
and one, respectively (Line 3). In the following iterations, we augment the offset
values and weights accordingly (Line 13) for all critical predicates p∈Acrit and the
corresponding robustness values vp, and time indices kp
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First Iteration (Saha)

y

5

critical point

t0 10

(a)

Second Iteration (Saha)

y

5

constrained point

t0 10

(b)

First Iteration (Our Encoding)

y

5

t0 10

(c)

Fig. 1: Resultant trajectories (black line) and goal set (green area) for Example 1. The
top left (a) shows a random initial trajectory, which is the resultant trajectory after
the first iteration of the iterative MILP approach by Saha and Julius [36]. The marked
critical point is the point closest to the target set. Top right (b) shows the trajectory
after the second iteration of Saha’s approach. Bottom (c) shows the trajectory after
one iteration using our encoding, satisfying the STL formula in Example 1.

4.2 Weighted Minimum Operator Encoding

The encoding of the min() operator hinges on the insight that in Prob. 2, our
objective is to maximize the robustness of the STL formula. For a min() operator,
rφ =min(rφ1,rφ2,...,rφm), maximizing rφ directly translates to maximization of each
rφi. Thus, we can remove the binary variables zi and directly encode rφ as

rφ ≤rφi ∀i∈{1,...,m}. (10)
For a specific subset of STL formulae, this encoding is even exact:
Proposition 1. If the quantitative robustness of an STL formula according to Def. 2
consists of only predicates and the min() operator (i.e., no max() operator), then
our weighted robustness encoding is exact in the first iteration.

Proof. Let rφ = min(rφ1,rφ2,...,rφm). Our objective is to maximize rφ. According
to the constraints in Eq. (10), the maximum value of rφ is the minimum value
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among rφ1,rφ2,...,rφm. Therefore, if rφ is maximized, it follows that each rφi is also
maximized and that rφ corresponds to the minimum of these maximum values.

We note that the iterative addition of constraints in [36] will also eventually
reach exact optimality. However, it can incur a large number of iterations. To better
illustrate the differences, we use the following example:

Example 1. We consider a system with one output signal y(t) and a system speci-
fication φ=□[0,10]y>5 that we want to satisfy over a simulation time of 10s.

Fig. 1 shows the resultant trajectories from our approach and Saha’s iterative algo-
rithm [36]. Fig. 1a shows a random initial trajectory. The corresponding critical point
is the point that violates the specification φ=□[0,10]y>5 the most, i.e., the minimum
point. Saha’s approach [36] begins with such a random trajectory and then adds a con-
straint at the corresponding critical point. The solver then synthesizes the trajectory
in Fig. 1b. However, to satisfy the STL requirement in Example 1, the entire trajectory
must be contained within the target region y>5. It is thus evident that in the worst
case, Saha’s approach requires n iterations to find a satisfying trajectory, where n is the
number of time indices. For a time step of ∆t=0.1, it would take 100 iterations to fully
encode the robustness of the formula in Example 4. On the other hand, our encoding
ensures that the robustness of the predicate y>5 is maximized at each time index k and
therefore only requires one iteration to find a satisfying trajectory as shown in Fig. 1c.

4.3 Weighted Maximum Operator Encoding

Unlike the minimum operator, we cannot directly encode the max() operator by
removing the binary variables 6. Instead, we replace the traditional MILP encoding
of the max() operator in Eq. (5) with a new encoding as follows:

rφ = 1
m

m∑
i=1

rφi. (11)

The above encoding is akin to a multi-objective optimization problem, in which
individual objectives are aggregated into a single objective through scalarization. The
objective is to maximize a linear combination of all components within the max()
operator. For the initial iteration in Alg. 1, each component rφ is weighted equally. For
later iterations, and as the weighting for predicates is augmented with critical values,
the weights in the multi-objective optimization problem are adjusted accordingly.
This allows the objective function to prioritize the satisfaction of certain components
over others based on their criticality. For instance, consider the following example:

Example 2. We consider a system with one output signal y(t) and a system speci-
fication φ=♢[0,10]y>5 that we want to satisfy over a simulation time of 10s.

6 if rφ≥rφi and the objective is to maximize rφ, then the problem is unbounded
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Fig. 2: Resultant trajectories (black line) and goal set (green) for Example 2. The top
left figure (a) shows a random initial trajectory, which is the resultant trajectory after
the first iteration of the iterative MILP approach by Saha and Julius [36]. The marked
critical point is the point closest to the target set (max). Top right (b) shows the trajec-
tory after the second iteration of Saha’s approach. The bottom left (c) is the trajectory
after one iteration using our encoding. The bottom right (d) shows the trajectory
after the second iteration of our algorithm, satisfying the STL formula in Example 2.

From Def. 2, the robustness of the specification in Example 2 can be represented as:

rφ = min
t∈[0,10]

rφ
t , (12)

where each rφ
t represents the degree of satisfaction of the predicate y>5 at time t.

Following from the weighted encoding of predicates in Eq. (9) and from the maximum
operator in Eq. (11), the robustness is encoded as

rφ = 1
n

n∑
k=1

wp
k(yk−5+bp), (13)

where n is the number of discrete time indices k in the time interval [0,10]. As all
weights are initialized to 1 in the initial iteration of Alg. 1, the overall robustness rφ

is equally comprised of the degree of satisfaction of y>5 at each time index k. Thus,
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the optimization Prob. 2 aim to maximize satisfaction at each time index k with
equal reward. In subsequent iterations, the weighting of critical points is increased,
and the objective function’s priorities are shifted accordingly.

We illustrate resultant trajectories from Saha’s approach [36] and our work in
Fig. 2. First, we show a random initial trajectory in Fig. 2a, which corresponds to the
trajectory after one iteration of the approach in [36]. The identified critical point is the
maximum point. In the following iteration, a constraint is added at the critical point
according to Eq. (8), and satisfaction at the critical point is maximized. However, the
critical point for the random initial trajectory is not guaranteed to prove critical for the
system overall. As the algorithm aim to maximize the initially identified point in sub-
sequent iterations, the solver may never converge to a desired trajectory. Fig. 2b shows
the next iteration of the algorithm, where the constrained point is maximized and once
again corresponds to the critical point but never reaches the target state, i.e., never
satisfies the STL requirement. Conversely, our approach in its first iteration aim to max-
imize satisfaction at all points with equal reward. The resultant trajectory is depicted
in Fig. 2c. The weighting of the critical point is then modified as in Line 13 in Alg. 1.
The iterative manipulation of weights based on critical points results in convergence to
the desired behavior. Fig. 2d shows the final trajectory after the second iteration, where
the STL formula in Example 2 is satisfied. In general, STL requirements with weighted
maximum encoding are not guaranteed to converge to a solution. We show, however,
that in practice, our encoding is highly successful, always finding a desired solution.

5 Weighted Koopman Operator Linearization

Koopman operator linearization [17,22] is a class of system identification methods
that leverages the Koopman operator theory for learning nonlinear system dynamics.
These methods produce competitive results for the analysis [29,7], control [31,18],
and verification [4,5] of dynamical systems. Koopman operator linearization methods
involve finding a nonlinear transformation from the original state space y ∈Rl to
Koopman observables by an observable function g :Rl →H, where H is often a high
dimensional vector space Rq,q>l. This transformation enables learning a linear system

g(yk+1)=Kg(yk), (14)

where K ∈Rq×q is the linear operator. Accordingly, Koopman operator linearization
methods require learning the transformation g and operator K. To keep the math
simple, we omit the external inputs uk to the Koopman model in this section. How-
ever, these methods are easily extended to dynamical systems with input spaces by
incorporating Koopman with inputs and control (KIC) [33]. KIC modifies Koopman’s
methods by augmenting the states with the inputs to accommodate controlled systems
that are applicable to the systems we use in evaluation.

The falsification framework in Alg. 1 uses extended dynamic mode decomposition
(eDMD) to learn Koopman surrogate models from a collection of trajectories.

Definition 3 (eDMD). Given a sequence of data points y1, ... ,yn ∈ Rl, eDMD
determines the system matrix K ∈Rq×q of the Koopman model in (14) by solving the
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following optimization problem:

K =argmin
K∈Rq×q

n−1∑
k=1

∥g(yk+1)−Kg(yk)∥2
2,

where g :Rl →Rq is the observable function of the Koopman model (14).

While eDMD traditionally fixes the observable function g, we select the best
observables via hyperparameter tuning. The AutoKoopman framework [24] tunes hy-
perparameters for Koopman methods efficiently, automating the selection of optimal
observables.

To improve the utility of the Koopman models for falsification, we employ weight-
ing schemes for eDMD. Weighted regression problems are highly beneficial in contexts
where some data points or parameter values are more significant than others due to
their criticality or uncertainty. For system identification, a simple scheme is to weight
each time index yk in the training trajectories by a scalar wk ∈R≥0. Online DMD
methods, for example, use this weighting to learn time evolving dynamics, weighting
trajectory points non-zero over a time window [41,8].

Definition 4 (W-eDMD). Weighted eDMD extends eDMD as given in Def. 4 by
introducing scalar weights w1,...,wn ∈R+ for each time point

K =argmin
K∈Rq×q

n−1∑
k=1

wk∥g(yk+1)−Kg(yk)∥2
2,

which allows some observations to contribute more weight to the objective.

Finally, a more sophisticated weighting scheme considers each state at every time
point. Here, each of the l states of the state vector yk ∈Rl has a different weight,
which is stored in the weight vector wk ∈Rl

≥0. Since we chose the weight for each state
to reflect its critically for the system specification, the objective function for surrogate
model identification will prioritize the states that are most relevant for falsification.

We formulate a novel eDMD variant, called state weighted eDMD (SW-eDMD).
The challenge we are facing with this approach is that in the objective function in
Def. 3, we can only weight the observables g, but not the states y. We therefore have
to transform the weights for the states to corresponding weights for the observables.
To achieve this, we utilize the Jacobian matrix of the observable function, whose
absolute value corresponds to the sensitivity of each observable to changes in the state
variables. Observables that are more sensitive (i.e., have larger absolute derivatives)
to highly weighted states are given more influence over the model learning objective.

Definition 5 (SW-eDMD). State-weighted eDMD extends eDMD as given in Def. 4
by weighting both time indices and states using vector-values weights w1,...,wn ∈Rl

≥0

K =argmin
K∈Rq×q

n−1∑
k=1

∥∥∥diag(|Jy(yk)|wk)(g(yk+1)−Kg(yk))
∥∥∥2

2
,
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where Jy =[∂g/∂y(1),···,∂g/∂y(l)] is the Jacobian matrix of g with respect to the state
variables y. Here, notation y(j) denotes the j-th state variable of a state vector y, and
the operator diag(v)∈Rq×q with v∈Rq returns a square matrix with vector v on its
diagonal.

SW-eDMD, like eDMD, is solved by learning an operator K via convex optimiza-
tion. To avoid overfitting in the presence of sparse or noisy data, eDMD often adds
rank adaptation as a regularization method, retaining only the most significant modes.
We implement rank adaptation by introducing a rank hyperparameter 1≤σ≤q and
learning the two rank-reduced matrices U and V instead of learning K directly,

K =UV, U ∈Rq×σ, V ∈Rσ×q. (15)

The selection of a suitable rank hyperparameter σ can also be automated, for example
by using cross-validation.

The main intuition behind the weighted approaches for Koopman linearization
is that we want to bias learning towards critical subsets of data. In particular, for
a set of learning trajectories, we aim to increase the weighting of trajectories that
are closer to falsifying (satisfying) the system. The weighting of each trajectory is
then directly proportional to its robustness. Such that for each trajectory τ with
robustness Q(φ,τ), we directly use the robustness as the weight for all time steps.

wk =Q(φ,τ) ∀k∈{1,...,n}. (16)

We note that while this setup allows for different weighting of time points, we choose
to weight all time points equally. The rationale is that weighting time points differently
could negatively impact the weighted robustness encoding approach described in
Sec. 4, which already applies different weights to critical time points.

Another important observation is that for a given STL formula, state variables do
not carry the same importance. In particular, it is expected that state variables more
heavily featured in the STL formula have a larger influence on the overall robustness.
Following the recursive encoding of robustness, we assign weighting priority with SW-
eDMD in proportion to the number of predicates for which a state variable is featured.
We start by setting the weight of each state to the total number of time indices n.
We then recursively traverse through each operator in the STL formula, updating the
weights. For this, we view the STL formula as a tree with temporal operators acting
as the nodes, as visualized in Fig. 3. The weights grow multiplicatively based on the
number of time indices nφ associated with each temporal operator along a path. We
define a path as a complete traversal from the root of the tree (STL formula) to a leaf
(atomic predicate). For instance, consider the path to atomic predicate p1 in Fig. 3,
for a system with a time step of ∆t=0.1 seconds. At the root node, the temporal
operator □[0,2] has an associated number of time indices nφ =20. Similarly, for the
next operator on the path ♢[3,4] spanning a time horizon of 1s, we have nφ =10. The
overall weight for each state i in predicate p1 is then w(i) = 200n. This process is
repeated for all atomic predicates and associated states. The state weights returned
are then used to bias learning of Koopman operators in the SW-eDMD framework.
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20

10

p1 p2

p3

Finally (♢)
Globally (□)

Atomic Predicate (pi)

Fig. 3: Tree structure for STL formula φ=□[0,2](♢[3,4](p1 ∧p2) ∨ p3) for a system
with a time step of ∆t=0.1 seconds. The values in temporal operator nodes represent
the number of time indices for the operator nφ.

6 Evaluation

In this section, we present the empirical evaluation of our proposed approach. We
incorporate weighted robustness encoding and weighted Koopman operator lineariza-
tion in the open-source tool FReaK- Falsification using Reachability and Koopman
7. We use the default settings for the tool and the default parameters in [6] unless
otherwise specified. We evaluate our approaches on the diverse set of benchmarks
from the 2022 ARCH competition [11], where we average the results over 10 attempts.
As evaluation metrics, we record the falsification rate FR, which specifies how many
of the 10 runs were successful, and the average and median number of simulations, S
and S̃, of the real system that is needed to falsify the specification. We also report the
percentage of overall computation time spent running simulations of the real system,
R= Simulation Time

Total Time (%). A higher R-value directly correlates to less computation time
spent in search of critical trajectories. We use Nmax =1000 as the limit on the number
of iterations of Algorithm 1. All presented computations were done on a 3.4GHz
AMD Ryzen 9 5950X 16-core processor with 64GB memory.

We divide our evaluation section into two main parts. First, in Sec. 6.1, we evaluate
the weighted robustness encoding and compare its efficiency against the traditional
MILP encoding in [6] and Saha’s approach in [36]. In Sec. 6.2, we discuss the results
obtained using weighted Koopman operator linearization.

We remark that in previous work by Bak et al. [6], the comparison with state-of-
the-art falsification tools shows that the Koopman falsification method with traditional
MILP encoding is highly effective. The approach outperforms all other participating
tools on 16 out of 19 benchmarks from the ARCH falsification competition. For
brevity, we omit the comparison with other tools from this paper. Instead, we focus
on comparing our novel weighted approaches with traditional Koopman falsification.
We also omit benchmarks for which no falsifying trace was found.

7 https://github.com/Abdu-Hekal/FReaK
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Table 1: Comparison of the performance of different robustness encodings on the
benchmarks from the ARCH competition (instance 1), where the results are averaged
over 10 executions. The evaluation metrics are the mean S and median S̃ number
of simulations for successful runs, the simulation time percentage R, as well as the
falsification rate FR.

Bench. MILP Saha [36] W-Rob

FR S S̃ R FR S S̃ R FR S S̃ R

AT1 10 7.9 4.0 43.5 10 10.7 10.5 46.7 10 5.1 2.5 46.9
AT2 10 2.1 2.0 61.0 3 572 579 32.6 10 2.0 2.0 62.4
AT51 10 5.7 4.5 22.4 10 3.9 4.0 28.1 10 22.7 8.0 25.9
AT52 10 1.3 1.0 37.3 10 1.8 1.0 41.2 10 1.2 1.0 56.8
AT53 10 1.7 1.0 37.9 10 1.5 1.0 48.9 10 1.6 1.0 43.1
AT54 10 1.9 1.0 33.0 10 2.1 1.0 39.1 10 2.4 1.0 33.5
AT6a 10 6.8 5.5 7.8 8 14.6 11.5 45.1 10 5.1 4.5 46.4
AT6b 10 11.0 6.0 40.5 10 20.9 19.0 43.5 10 6.1 5.0 44.1
AT6c 10 9.9 6.0 39.1 10 58.6 32.0 40.3 10 5.4 5.0 44.3
AT6abc 10 12.5 7.5 27.0 8 127 80.0 19.4 10 6.1 4.5 32.6

NN 10 2.0 2.0 51.5 10 4.4 4.5 51.8 10 2.0 2.0 59.5
NNβ =0.04 10 30.9 33.0 39.1 10 68.5 71.0 40.6 10 61.4 43.0 37.8

CC1 10 3.6 3.0 74.2 10 6.8 7.0 73.5 10 5.1 5.0 71.1
CC2 10 3.0 3.0 67.3 10 6.6 4.5 73.4 10 3.1 3.0 72.9
CC3 10 5.7 5.5 57.0 10 11.9 10.5 65.7 10 6.2 4.0 63.5
CC4 10 188.5 140.0 57.0 10 150 112 63.1 10 158 150 59.5
CC5 10 48.2 10.5 49.9 10 18.8 16.5 57.7 10 37.4 38.5 55.1
CCx 10 110.5 62.0 50.2 10 61.7 49.5 49.1 10 166 147 42.6

SC 10 41.6 29.5 6.7 0 - - - 10 123 104 6.7

6.1 Weighted Robustness Encoding

Here, we evaluate the efficiency of the weighted robustness encoding in Sec. 4. We
compare our weighted encoding (W-Rob) against the traditional encoding (MILP) in
Table 1. It is expected that traditional encoding incurs a lower number of simulations,
as it exactly solves Prob. 2. However, our weighted encoding offers a unique advantage
in this context. The learned Koopman model MK is not exact, so that the robustness
for MK does not directly correspond to that of the real system. Herein lies the benefit
of our encoding, where the weighting of predicates and the corresponding critical points
are modified based on the behavior of the real system. Essentially, weighting adjusts
not only for inaccuracies in the heuristic encoding, but also for inaccuracies in model
learning. In fact, we observe in Table 1 that W-Rob, in comparison with MILP, records
a lower number of average simulations per falsifying trace for 10 of the 19 benchmarks.

The main advantage the weighted encoding is expected to offer over traditional
MILP encoding is reduced computational complexity. As seen in Table 1, W-Rob
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Fig. 4: Number of simulations S (left) and computation time in seconds for the
optimizer (right) for the CC5 benchmarks from the ARCH competition over 10
executions, where we compare traditional MILP encoding and our new weighted
encoding for an increasing number of time points n. The black dots in the left figure
represent the outliers from all executions. The y-axis for the figure on the right is
displayed on a logarithmic scale.

records a higher R-value than MILP encoding for 16 of the 19 benchmarks. Although
there can be substantial differences in R values, such as in the AT6a benchmark (7.8
and 46.4), the R values across most benchmarks are comparable for each encoding.
This can be attributed to the limited number of time indices n for robustness
encoding used in the previous Koopman falsification work [6] to ensure MILP
feasibility. In general, it is expected that a larger number of time indices will result
in more accurate results, as it will allow for a more fine-grained analysis of the
system behavior. This holds particularly true for complex requirements. Consider
requirement CC5:=□[0,72]♢[0,8](¬(□[0,5]y(2)−y(1) ≥9)∧(□[5,20]y(5)−y(4) ≥9)) from
the ARCH competition. The time horizon for the problem is T =100s, and the default
discretization time step in Table 1 is ∆t=10s, resulting in n=10. In Fig. 4, we evaluate
the number of simulations S (left) and computation time for the optimizer (right)
for an increasing number of time indices. As expected, the number of simulations
required to falsify the system generally reduces for a finer discretization. It is also
worth noting that our weighted method needs fewer simulations than traditional
MILP across all discretization levels. Further, the reduced computation time for our
weighted encoding is evident, particularly noticeable with finer discretization levels,
where traditional MILP encoding exhibits exponential growth in computation time. In
fact, for n=50 time indices where the discretization time step is ∆t=2s, our weighted
encoding requires 2.32 seconds compared to 1705 seconds for MILP encoding.
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Table 2: Comparison of the performance of different weighted Koopman approaches
on the benchmarks from the ARCH competition (instance 1), where the results are
averaged over 10 executions. The evaluation metrics are the mean S and median
S̃ number of simulations for successful runs, the simulation time percentage R, as
well as the falsification rate FR.

Bench. eDMD W-eDMD SW-eDMD

FR S S̃ R FR S S̃ R FR S S̃ R

AT1 10 5.1 2.5 46.9 10 4.6 3.0 47.0 10 5.1 4.0 41.8
AT2 10 2.0 2.0 62.4 10 2.0 2.0 63.6 10 2.0 2.0 59.1
AT51 10 22.7 8.0 25.9 10 27.2 20.5 25.8 10 22.7 8.0 23.8
AT52 10 1.2 1.0 56.8 10 1.7 1.0 44.6 10 1.2 1.0 56.0
AT53 10 1.6 1.0 43.1 10 1.4 1.0 49.7 10 1.6 1.0 38.7
AT54 10 2.4 1.0 33.5 10 1.9 1.0 40.0 10 2.4 1.0 31.3
AT6a 10 5.1 4.5 46.4 10 6.0 5.0 45.7 10 5.1 4.5 42.5
AT6b 10 6.1 5.0 44.1 10 8.2 5.5 43.0 10 7.0 5.0 40.0
AT6c 10 5.4 5.0 44.3 10 6.2 3.0 45.1 10 6.7 5.0 39.7
AT6abc 10 6.1 4.5 32.6 10 3.2 3.0 38.2 10 6.1 4.5 30.4

NN 10 2.0 2.0 59.5 10 2.4 2.0 55.8 10 2.0 2.0 60.1
NNβ =0.04 10 61.4 43.0 37.8 10 91.7 49.0 41.5 10 40.1 42.5 39.8

CC1 10 5.1 5.0 71.1 10 6.1 5.0 71.4 10 7.5 7.0 68.1
CC2 10 3.1 3.0 72.9 10 2.7 3.0 73.9 10 2.7 3.0 70.9
CC3 10 6.2 4.0 63.5 10 8.0 6.5 60.0 10 4.4 4.0 61.4
CC4 10 158 150 59.5 10 93.6 77.5 60.0 10 90.2 72.5 55.2
CC5 10 37.4 38.5 55.1 10 22.4 15.5 54.2 10 29.2 22.0 50.1
CCx 10 166 147 42.6 10 198 168 41.6 10 88.8 82.5 39.7

SC 10 123 104 6.7 10 150 140 6.9 10 66.3 32.5 5.8

Another natural candidate for our comparison is Saha’s approach [36] as discussed
throughout the paper. The approach incrementally introduces constraints, resulting
in low computation times (i.e., large R values), as seen in Table 1. Saha’s approach
performs well on some benchmarks, particularly the CC benchmarks. This is once
again due to the small number of time points (n=10) used for the CC benchmarks.
With fewer time points, fewer constraints are needed, and the iterative approach
can quickly converge to a falsifying trace. However, for benchmarks that require a
larger number of time indices, Saha’s approach typically requires a larger number of
simulations, such as for AT6c (n=30), where it requires, on average, 58.6 simulations
compared to our 5.4. Additionally, it can encounter failures on particular runs, as
in AT2 (n=30), where it fails to find a falsifying instance for 7 of the 10 runs and
incurs an average of 572 simulations in the 3 instances where it succeeds. For the
SC (n=150) benchmark, it fails to produce a falsifying trace for any run. The results
are consistent with observations discussed in Sec. 4.
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6.2 Weighted Koopman Operator Linearization

In Table 2, we evaluate the weighted approach for Koopman linearization intro-
duced in Sec. 5. We compare baseline eDMD with W-eDMD, where trajectories are
weighted, and SW-eDMD, where both trajectories and states are assigned individual
weights. While W-eDMD incurs a lower number of simulations on some benchmarks
compared to eDMD, e.g., CC4, CC5, the performance is not consistent across all
benchmarks. W-eDMD incurs a larger number of simulations on average for 11 of
the 19 benchmarks. One reason for this behavior is overfitting, where, for particular
benchmarks, the robustness of trajectories are vastly different, leading to a heavily
skewed weighting scheme. Another important aspect is that the hyperparameters in
the previous Koopman falsification work [6] were tuned for eDMD, and we retain
these parameters for direct comparison purposes. Conversely, and despite these fac-
tors, SW-eDMD demonstrates significant improvement over eDMD, particularly for
challenging benchmarks. For example, SW-eDMD needs 40.1 simulations to find a
falsifying trace for NNβ, whereas eDMD requires 61.4 simulations. Similarly, for the
SC benchmark, SW-eDMD requires 66.3 simulations compared to 123 for eDMD.
In fact, for all benchmarks that require more than 10 simulations to find a falsifying
trace, SW-eDMD outperforms eDMD. The R values are similar across all three
approaches, with a slight increase in computation time (decrease in R) for SW-eDMD,
which can be attributed to its use of the third-party optimizer, Clarabel 8.

7 Conclusion

Falsification based on MILP and Koopman surrogate models has proven highly
effective [6]. However, MILP performance significantly worsens with increasing size
and complexity. In this paper, we introduced a new heuristic encoding that reduces the
problem to a linear formulation. We rely on an iterative weighted approach that guides
the optimization based on real system behavior. We evaluate our approach on the set of
benchmarks from the ARCH falsification competition and show its efficacy, particularly
for more complex problems. On a similar note, we proposed a new weighting method
for learning the Koopman surrogate models. We developed a novel eDMD variant
termed State Weighted Extended Dynamic Mode Decomposition (SW-eDMD) to
bias learning toward states and trajectories most relevant to property violation. We
show that the benefit of SW-eDMD is particularly evident for complex requirements,
where it incurs a significantly fewer number of simulations to converge to a solution.
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23. Leung, K., Aréchiga, N., Pavone, M.: Backpropagation through signal temporal logic
specifications: Infusing logical structure into gradient-based methods. The International
Journal of Robotics Research 42(6), 356–370 (2023)

24. Lew, E., et al.: AutoKoopman: A toolbox for automated system identification
via Koopman operator linearization. In: Proc. of the International Symposium on
Automated Technology for Verification and Analysis. pp. 237–250 (2023)

25. Lindemann, L., Dimarogonas, D.V.: Control barrier functions for signal temporal logic
tasks. IEEE Control Systems Letters 3(1), 96–101 (2018)

26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Proc.
of the International Conference on Formal Modelling and Analysis of Timed Systems.
pp. 152–166 (2004)

27. Mathesen, L., Pedrielli, G., Fainekos, G.: Efficient optimization-based falsification
of cyber-physical systems with multiple conjunctive requirements. In: Proc. of the
International Conference on Automation Science and Engineering. pp. 732–737 (2021)

28. Menghi, C., Nejati, S., Briand, L., Parache, Y.I.: Approximation-refinement testing of
compute-intensive cyber-physical models: An approach based on system identification.
In: Proc. of the International Conference on Software Engineering. pp. 372–384 (2020)

29. Mezíc, I.: Analysis of fluid flows via spectral properties of the Koopman operator.
Annual Review of Fluid Mechanics 45, 357–378 (2013)

30. Nghiem, T., et al.: Monte-Carlo techniques for falsification of temporal properties of
non-linear hybrid systems. In: Proc. of the International Conference on Hybrid Systems:
Computation and Control. pp. 211–220 (2010)

31. Otto, S.E., Rowley, C.W.: Koopman operators for estimation and control of dynamical
systems. Annual Review of Control, Robotics, and Autonomous Systems 4, 59–87 (2021)

32. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: Control using the smooth
robustness of temporal logic. In: Prof. of the International Conference on Control
Technology and Applications. pp. 1235–1240 (2017)

33. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Generalizing Koopman theory to allow for
inputs and control. SIAM Journal on Applied Dynamical Systems 17(1), 909–930 (2018)

34. Raman, V., et al.: Model predictive control with signal temporal logic specifications.
In: Prof. of the International Conference on Decision and Control. pp. 81–87 (2014)

35. Raman, V., et al.: Reactive synthesis from signal temporal logic specifications. In: Proc.
of the International Conference on Hybrid Systems: Computation and Control. pp.
239–248 (2015)

36. Saha, S., Julius, A.A.: An MILP approach for real-time optimal controller synthesis
with metric temporal logic specifications. In: Proc. of the American Control Conference.
pp. 1105–1110 (2016)

37. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proc. of the International Conference on
Hybrid Systems: Computation and Control. pp. 125–134 (2012)

38. Takayama, Y., Hashimoto, K., Ohtsuka, T.: Signal temporal logic meets convex-concave
programming: A structure-exploiting SQP algorithm for STL specifications. In: Proc.
of the International Conference on Decision and Control. pp. 6855–6862 (2023)



Fast Koopman Surrogate Falsification 21

39. Waga, M.: Falsification of cyber-physical systems with robustness-guided black-box
checking. In: Proc. of the International Conference on Hybrid Systems: Computation
and Control (2020), Article No. 11

40. Yamagata, Y., et al.: Falsification of cyber-physical systems using deep reinforcement
learning. IEEE Transactions on Software Engineering 47(12), 2823–2840 (2020)

41. Zhang, H., Rowley, C.W., Deem, E.A., Cattafesta, L.N.: Online dynamic mode
decomposition for time-varying systems. SIAM Journal on Applied Dynamical Systems
18(3), 1586–1609 (2019)

42. Zhang, Z., et al.: Effective hybrid system falsification using Monte Carlo tree search
guided by QB-robustness. In: Prof. of the International Conference on Computer Aided
Verification. pp. 595–618 (2021)


	Fast Koopman Surrogate Falsification using Linear Relaxations and Weights

